forked from bytedance/ByteMLPerf
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
386 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,386 @@ | ||
import sys | ||
import csv | ||
import json | ||
import pathlib | ||
import argparse | ||
import logging | ||
|
||
|
||
CUR_DIR = pathlib.Path(__file__).parent.absolute() | ||
PRJ_ROOT_DIR = CUR_DIR.parent | ||
|
||
sys.path.insert(0, str(PRJ_ROOT_DIR)) | ||
|
||
|
||
unique_attrs = [ | ||
"op_name", | ||
"sku_name", | ||
"owner", | ||
"perf_mode" | ||
] | ||
|
||
|
||
def get_unique_key( | ||
op_name, | ||
sku_name, | ||
owner, | ||
perf_mode, | ||
*args, | ||
**kwargs | ||
): | ||
return ".".join([ | ||
sku_name, | ||
owner, | ||
op_name, | ||
perf_mode | ||
]).replace(" ", "_") | ||
|
||
|
||
|
||
arguments_map = { | ||
# 单目算子 | ||
# [batch, len] --> [batch, len] | ||
"sin": ["dtype", "batch", "len"], | ||
"cos": ["dtype", "batch", "len"], | ||
"exp": ["dtype", "batch", "len"], | ||
"exponential": ["dtype", "batch", "len"], | ||
"silu": ["dtype", "batch", "len"], | ||
"gelu": ["dtype", "batch", "len"], | ||
"swiglu": ["dtype", "batch", "len"], | ||
# float32: float32 --> float16/bfloat16 | ||
# float16: float16 --> float32 | ||
# bfloat16: bfloat16 --> float32 | ||
"cast": ["dtype", "batch", "len"], | ||
|
||
|
||
# 双目算子 | ||
# [batch, len] (op) [batch, len] --> [batch, len] | ||
"add": ["dtype", "batch", "len"], | ||
"mul": ["dtype", "batch", "len"], | ||
"sub": ["dtype", "batch", "len"], | ||
"div": ["dtype", "batch", "len"], | ||
|
||
|
||
# 规约算子 | ||
# [batch, len] --> [batch, len] | ||
"layernorm": ["dtype", "batch", "len"], | ||
"softmax": ["dtype", "batch", "len"], | ||
# [batch, len] --> [batch, 1] | ||
"reduce_sum": ["dtype", "batch", "len"], | ||
"reduce_min": ["dtype", "batch", "len"], | ||
"reduce_max": ["dtype", "batch", "len"], | ||
|
||
# 索引算子 | ||
# [batch, len] (op) [batch] --> [batch, len] | ||
"index_add": ["dtype", "batch", "len"], | ||
# [batch, len] --> [batch, len] | ||
"sort": ["dtype", "batch", "len"], | ||
"unique": ["dtype", "batch", "len"], | ||
"gather": ["dtype", "batch", "len"], | ||
"scatter": ["dtype", "batch", "len"], | ||
|
||
|
||
# 矩阵算子 | ||
# [M, K] * [K, N] --> [M, N] | ||
"gemm": ["dtype", "M", "N", "K"], | ||
# [batch, M, K] * [batch, K, N] --> [batch, M, N] | ||
"batch_gemm": ["dtype", "batch", "M", "N", "K"], | ||
# # group * {[M, K] * [K, N] = [M, N] | ||
"group_gemm": ["dtype", "batch", "group", "M_str", "N", "K"], | ||
|
||
|
||
# 通信算子 | ||
# [batch, len] --> [batch, len] | ||
# tp_size split over batch | ||
"broadcast": ["dtype", "tp_size", "batch", "len"], | ||
"allreduce": ["dtype", "tp_size", "batch", "len"], | ||
"allgather": ["dtype", "tp_size", "batch", "len"], | ||
"alltoall": ["dtype", "tp_size", "batch", "len"], | ||
"reducescatter": ["dtype", "tp_size", "batch", "len"], | ||
"p2p": ["dtype", "tp_size", "batch", "len"], | ||
|
||
"device2host": ["dtype", "batch", "len"], | ||
"host2device": ["dtype", "batch", "len"] | ||
} | ||
|
||
|
||
target_attrs = [ | ||
# latency in us | ||
"latency" | ||
] | ||
|
||
|
||
def get_csv_headers(op_name): | ||
return unique_attrs + arguments_map.get(op_name, []) + target_attrs | ||
|
||
|
||
|
||
|
||
|
||
|
||
logger = logging.getLogger("bytemlperf_aeolus") | ||
|
||
def setup_logger(loglevel: str): | ||
fmt = logging.Formatter( | ||
fmt="%(asctime)s.%(msecs)03d %(filename)s:%(lineno)d [%(levelname)s]: %(message)s", | ||
datefmt="%Y-%m-%d %H:%M:%S", | ||
) | ||
handler = logging.StreamHandler(stream=sys.stdout) | ||
handler.setFormatter(fmt) | ||
logger.addHandler(handler) | ||
logger.setLevel(loglevel.upper()) | ||
logger.propagate = False | ||
|
||
|
||
sku_name_mapping = { | ||
"MLU590-M9": "MLU590 M9", | ||
"MLU590-M9D": "MLU590 M9D", | ||
"MLU590-M9DK": "MLU590 M9D", | ||
"Iluvatar BI-V150": "BI-V150", | ||
"NVIDIA A800-SXM4-80GB": "A800 80GB SXM", | ||
"NVIDIA H800": "H800 80GB SXM", | ||
"NVIDIA H20": "H20 96GB SXM", | ||
"Ascend910B2C": "Ascend910B2" | ||
} | ||
|
||
dtype_map = { | ||
"float": "float32", | ||
"half": "float16", | ||
"int": "int32" | ||
} | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
def normal_ops_func(op, sku_name, frame, perf_mode, json_data): | ||
if not json_data or "Error" in json_data: | ||
return | ||
dtype = json_data["Dtype"] | ||
if dtype in dtype_map: | ||
dtype = dtype_map[dtype] | ||
|
||
batch = json_data["Tensor Shapes"][0][0] | ||
len = json_data["Tensor Shapes"][0][1] | ||
latency = json_data["Avg latency(us)"] | ||
|
||
return [op, sku_name, frame, perf_mode, dtype, batch, len, latency] | ||
|
||
|
||
|
||
def gemm_func(op, sku_name, frame, perf_mode, json_data): | ||
if not json_data or "Error" in json_data: | ||
return | ||
dtype = json_data["Dtype"] | ||
if dtype in dtype_map: | ||
dtype = dtype_map[dtype] | ||
|
||
M = json_data["Tensor Shapes"][0][0] | ||
K = json_data["Tensor Shapes"][0][1] | ||
N = json_data["Tensor Shapes"][1][1] | ||
latency = json_data["Avg latency(us)"] | ||
|
||
return [op, sku_name, frame, perf_mode, dtype, M, N, K, latency] | ||
|
||
|
||
def batch_gemm_func(op, sku_name, frame, perf_mode, json_data): | ||
if not json_data or "Error" in json_data: | ||
return | ||
dtype = json_data["Dtype"] | ||
if dtype in dtype_map: | ||
dtype = dtype_map[dtype] | ||
|
||
batch_size = json_data["Tensor Shapes"][0][0] | ||
M = json_data["Tensor Shapes"][0][1] | ||
K = json_data["Tensor Shapes"][0][2] | ||
N = json_data["Tensor Shapes"][1][2] | ||
latency = json_data["Avg latency(us)"] | ||
|
||
return [op, sku_name, frame, perf_mode, dtype, batch_size, M, N, K, latency] | ||
|
||
def group_gemm_func(op, sku_name, frame, perf_mode, json_data): | ||
if not json_data or "Error" in json_data: | ||
return | ||
dtype = json_data["Dtype"] | ||
if dtype in dtype_map: | ||
dtype = dtype_map[dtype] | ||
|
||
batch_size = json_data["Tensor Shapes"][0][0][0] | ||
group = len(json_data["Tensor Shapes"]) | ||
|
||
M_list = [int(json_data["Tensor Shapes"][i][0][0]) // batch_size for i in range(group)] | ||
M_list_str = "/".join([str(m) for m in M_list]) | ||
K = json_data["Tensor Shapes"][0][0][1] | ||
N = json_data["Tensor Shapes"][0][1][1] | ||
latency = json_data["Avg latency(us)"] | ||
|
||
return [op, sku_name, frame, perf_mode, dtype, batch_size, group, M_list_str,N, K, latency] | ||
|
||
|
||
|
||
def ccl_ops_func(op, sku_name, frame, perf_mode, json_data): | ||
if not json_data or "Error" in json_data: | ||
return | ||
dtype = json_data["Dtype"] | ||
if dtype in dtype_map: | ||
dtype = dtype_map[dtype] | ||
|
||
tp_size = json_data["Group"] | ||
batch = json_data["Tensor Shapes"][0][0] | ||
len = json_data["Tensor Shapes"][0][1] | ||
latency = json_data["Avg latency(us)"] | ||
|
||
return [op, sku_name, frame, perf_mode, dtype, tp_size, batch, len, latency] | ||
|
||
def d2h_h2d_func(op, sku_name, frame, perf_mode, json_data): | ||
if not json_data or "Error" in json_data: | ||
return | ||
dtype = json_data["Dtype"] | ||
if dtype in dtype_map: | ||
dtype = dtype_map[dtype] | ||
|
||
batch = json_data["Tensor Shapes"][0][0] | ||
len = json_data["Tensor Shapes"][0][1] | ||
latency = json_data["Avg latency(us)"] | ||
|
||
return [op, sku_name, frame, perf_mode, dtype, batch, len, latency] | ||
|
||
|
||
post_func_map = { | ||
"sin": normal_ops_func, | ||
"cos": normal_ops_func, | ||
"exp": normal_ops_func, | ||
"exponential": normal_ops_func, | ||
"silu": normal_ops_func, | ||
"gelu": normal_ops_func, | ||
"swiglu": normal_ops_func, | ||
"cast": normal_ops_func, | ||
|
||
"add": normal_ops_func, | ||
"mul": normal_ops_func, | ||
"sub": normal_ops_func, | ||
"div": normal_ops_func, | ||
|
||
"layernorm": normal_ops_func, | ||
"softmax": normal_ops_func, | ||
"reduce_sum": normal_ops_func, | ||
"reduce_min": normal_ops_func, | ||
"reduce_max": normal_ops_func, | ||
|
||
"index_add": normal_ops_func, | ||
"sort": normal_ops_func, | ||
"unique": normal_ops_func, | ||
"gather": normal_ops_func, | ||
"scatter": normal_ops_func, | ||
|
||
"gemm": gemm_func, | ||
"batch_gemm": batch_gemm_func, | ||
"group_gemm": group_gemm_func, | ||
|
||
"broadcast": ccl_ops_func, | ||
"allreduce": ccl_ops_func, | ||
"allgather": ccl_ops_func, | ||
"alltoall": ccl_ops_func, | ||
"reducescatter": ccl_ops_func, | ||
"p2p": ccl_ops_func, | ||
|
||
"device2host": d2h_h2d_func, | ||
"host2device": d2h_h2d_func | ||
} | ||
|
||
|
||
|
||
|
||
def postprocess(op, file_list, dst_dir): | ||
json_data_list = [json.load(open(file)) for file in file_list] | ||
if not json_data_list: | ||
logger.error(f"no data found in {file_list}") | ||
return | ||
|
||
sku_name = json_data_list[0]["Device Info"] | ||
sku_name = sku_name_mapping.get(sku_name, sku_name) | ||
perf_datas = [] | ||
for json_data in json_data_list: | ||
if "Performance" not in json_data: | ||
logger.error(f"no performance data") | ||
continue | ||
perf_data = json_data["Performance"] | ||
if not perf_datas: | ||
perf_datas = perf_data | ||
else: | ||
perf_datas.extend(perf_data) | ||
|
||
unique_name = get_unique_key(op, sku_name, "torch", "host") | ||
unique_csv_file = f"{unique_name}.csv" | ||
unique_csv_path = dst_dir / unique_csv_file | ||
|
||
with open(unique_csv_path, "w") as f: | ||
writer = csv.writer(f) | ||
writer.writerow(get_csv_headers(op)) | ||
|
||
for perf_data in perf_datas: | ||
if op in post_func_map: | ||
row = post_func_map[op](op, sku_name, "torch", "host", perf_data) | ||
if row: | ||
writer.writerow(row) | ||
|
||
|
||
|
||
def convert_src(src, dst): | ||
logger.info(f"src: {src}") | ||
logger.info(f"dst: {dst}") | ||
|
||
op_data_map = {} | ||
for file in src.rglob("*.json"): | ||
dir_name = file.parent.name | ||
if dir_name == "gemv": | ||
dir_name = "gemm" | ||
if not dir_name in op_data_map: | ||
op_data_map[dir_name] = [] | ||
op_data_map[dir_name].append(file) | ||
|
||
for op, files in op_data_map.items(): | ||
logger.info(f"op: {op}") | ||
if op not in arguments_map and op != "gemv": | ||
logger.error(f"invalid op: {op}") | ||
continue | ||
postprocess(op, files, dst) | ||
|
||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--src", type=str, required=True) | ||
|
||
parser.add_argument("--output_dir", type=str, default="./temp") | ||
parser.add_argument("--log_level", type=str, default="INFO") | ||
args = parser.parse_args() | ||
setup_logger(args.log_level) | ||
|
||
src_dir = pathlib.Path(args.src).absolute() | ||
if not src_dir.exists(): | ||
logger.error(f"{args.src} does not exist") | ||
exit(1) | ||
elif not src_dir.is_dir(): | ||
logger.error(f"{args.src} is not a directory") | ||
exit(1) | ||
|
||
output_dir = pathlib.Path(args.output_dir).absolute() | ||
if not output_dir.exists(): | ||
output_dir.mkdir(parents=True, exist_ok=True) | ||
elif not output_dir.is_dir(): | ||
logger.error(f"{args.output_dir} is not a directory") | ||
exit(1) | ||
|
||
convert_src(src_dir, output_dir) |