forked from AliceO2Group/O2Physics
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[PWGLF] Task for high mas reconstruction in 2 phi decay mode (AliceO2…
- Loading branch information
Showing
2 changed files
with
324 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,319 @@ | ||
// Copyright 2019-2020 CERN and copyright holders of ALICE O2. | ||
// See https://alice-o2.web.cern.ch/copyright for details of the copyright holders. | ||
// All rights not expressly granted are reserved. | ||
// | ||
// This software is distributed under the terms of the GNU General Public | ||
// License v3 (GPL Version 3), copied verbatim in the file "COPYING". | ||
// | ||
// In applying this license CERN does not waive the privileges and immunities | ||
// granted to it by virtue of its status as an Intergovernmental Organization | ||
// or submit itself to any jurisdiction. | ||
/// | ||
/// \brief this is a starting point for the Resonances tutorial | ||
/// \author sourav kundu | ||
/// \since 02/11/2023 | ||
|
||
#include <Framework/Configurable.h> | ||
#include <TLorentzVector.h> | ||
#include <Math/GenVector/Boost.h> | ||
#include <Math/Vector4D.h> | ||
#include <TMath.h> | ||
#include <fairlogger/Logger.h> | ||
#include <iostream> | ||
#include <iterator> | ||
#include <string> | ||
|
||
#include "Framework/AnalysisTask.h" | ||
#include "Framework/ASoAHelpers.h" | ||
#include "Framework/runDataProcessing.h" | ||
#include "Framework/AnalysisDataModel.h" | ||
#include "Framework/StepTHn.h" | ||
#include "Common/Core/trackUtilities.h" | ||
#include "PWGLF/DataModel/ReducedDoublePhiTables.h" | ||
#include "CommonConstants/PhysicsConstants.h" | ||
|
||
using namespace o2; | ||
using namespace o2::framework; | ||
using namespace o2::framework::expressions; | ||
using namespace o2::soa; | ||
|
||
struct doublephimeson { | ||
HistogramRegistry histos{"histos", {}, OutputObjHandlingPolicy::AnalysisObject}; | ||
|
||
Configurable<bool> fillRotation{"fillRotation", 1, "Fill rotation"}; | ||
Configurable<int> strategyPID{"strategyPID", 0, "PID strategy"}; | ||
Configurable<float> minPhiMass{"minPhiMass", 1.01, "Minimum phi mass"}; | ||
Configurable<float> maxPhiMass{"maxPhiMass", 1.03, "Maximum phi mass"}; | ||
Configurable<bool> additionalEvsel{"additionalEvsel", false, "Additional event selection"}; | ||
Configurable<float> cutNsigmaTPC{"cutNsigmaTPC", 2.5, "nsigma cut TPC"}; | ||
Configurable<float> cutNsigmaTOF{"cutNsigmaTOF", 3.0, "nsigma cut TOF"}; | ||
// Event Mixing | ||
Configurable<int> nEvtMixing{"nEvtMixing", 10, "Number of events to mix"}; | ||
ConfigurableAxis CfgVtxBins{"CfgVtxBins", {10, -10, 10}, "Mixing bins - z-vertex"}; | ||
ConfigurableAxis CfgMultBins{"CfgMultBins", {VARIABLE_WIDTH, 0.0, 20.0, 40.0, 60.0, 80.0, 500.0}, "Mixing bins - number of contributor"}; | ||
|
||
// THnsparse bining | ||
ConfigurableAxis configThnAxisInvMass{"configThnAxisInvMass", {1500, 2.0, 3.5}, "#it{M} (GeV/#it{c}^{2})"}; | ||
ConfigurableAxis configThnAxisDaugherPt{"configThnAxisDaugherPt", {25, 0.0, 50.}, "#it{p}_{T} (GeV/#it{c})"}; | ||
ConfigurableAxis configThnAxisPt{"configThnAxisPt", {40, 0.0, 20.}, "#it{p}_{T} (GeV/#it{c})"}; | ||
ConfigurableAxis configThnAxisKstar{"configThnAxisKstar", {50, 0.0, 0.5}, "#it{k}^{*} (GeV/#it{c})"}; | ||
|
||
// Initialize the ananlysis task | ||
void init(o2::framework::InitContext&) | ||
{ | ||
// register histograms | ||
histos.add("hnsigmaTPCKaonPlus", "hnsigmaTPCKaonPlus", kTH2F, {{1000, -3.0, 3.0f}, {100, 0.0f, 10.0f}}); | ||
histos.add("hnsigmaTPCKaonMinus", "hnsigmaTPCKaonMinus", kTH2F, {{1000, -3.0, 3.0f}, {100, 0.0f, 10.0f}}); | ||
histos.add("hPhid1Mass", "hPhid1Mass", kTH2F, {{40, 1.0, 1.04f}, {100, 0.0f, 10.0f}}); | ||
histos.add("hPhid2Mass", "hPhid2Mass", kTH2F, {{40, 1.0, 1.04f}, {100, 0.0f, 10.0f}}); | ||
|
||
const AxisSpec thnAxisInvMass{configThnAxisInvMass, "#it{M} (GeV/#it{c}^{2})"}; | ||
const AxisSpec thnAxisDaughterPt{configThnAxisDaugherPt, "#it{p}_{T} (GeV/#it{c})"}; | ||
const AxisSpec thnAxisPt{configThnAxisPt, "#it{p}_{T} (GeV/#it{c})"}; | ||
const AxisSpec thnAxisKstar{configThnAxisKstar, "#it{k}^{*} (GeV/#it{c})"}; | ||
|
||
histos.add("SEMassUnlike", "SEMassUnlike", HistType::kTHnSparseF, {thnAxisInvMass, thnAxisPt, thnAxisDaughterPt, thnAxisDaughterPt, thnAxisKstar}); | ||
histos.add("SEMassRot", "SEMassRot", HistType::kTHnSparseF, {thnAxisInvMass, thnAxisPt, thnAxisDaughterPt, thnAxisDaughterPt, thnAxisKstar}); | ||
|
||
histos.add("MEMassUnlike", "MEMassUnlike", HistType::kTHnSparseF, {thnAxisInvMass, thnAxisPt, thnAxisDaughterPt, thnAxisDaughterPt, thnAxisKstar}); | ||
histos.add("MEMassRot", "MEMassRot", HistType::kTHnSparseF, {thnAxisInvMass, thnAxisPt, thnAxisDaughterPt, thnAxisDaughterPt, thnAxisKstar}); | ||
} | ||
|
||
// get kstar | ||
TLorentzVector trackSum, PartOneCMS, PartTwoCMS, trackRelK; | ||
float getkstar(const TLorentzVector part1, | ||
const TLorentzVector part2) | ||
{ | ||
// const TLorentzVector trackSum = part1 + part2; | ||
trackSum = part1 + part2; | ||
const float beta = trackSum.Beta(); | ||
const float betax = beta * std::cos(trackSum.Phi()) * std::sin(trackSum.Theta()); | ||
const float betay = beta * std::sin(trackSum.Phi()) * std::sin(trackSum.Theta()); | ||
const float betaz = beta * std::cos(trackSum.Theta()); | ||
// TLorentzVector PartOneCMS(part1); | ||
// TLorentzVector PartTwoCMS(part2); | ||
PartOneCMS.SetXYZM(part1.Px(), part1.Py(), part1.Pz(), part1.M()); | ||
PartTwoCMS.SetXYZM(part2.Px(), part2.Py(), part2.Pz(), part2.M()); | ||
const ROOT::Math::Boost boostPRF = ROOT::Math::Boost(-betax, -betay, -betaz); | ||
PartOneCMS = boostPRF(PartOneCMS); | ||
PartTwoCMS = boostPRF(PartTwoCMS); | ||
// const TLorentzVector trackRelK = PartOneCMS - PartTwoCMS; | ||
trackRelK = PartOneCMS - PartTwoCMS; | ||
return 0.5 * trackRelK.P(); | ||
} | ||
bool selectionPID(float nsigmaTPC, float nsigmaTOF, int TOFHit, int PIDStrategy, float ptcand) | ||
{ | ||
if (PIDStrategy == 0) { | ||
if (TOFHit != 1) { | ||
if (TMath::Abs(nsigmaTPC) < cutNsigmaTPC) { | ||
return true; | ||
} | ||
} | ||
if (TOFHit == 1) { | ||
if (TMath::Abs(nsigmaTOF) < cutNsigmaTOF) { | ||
return true; | ||
} | ||
} | ||
} | ||
if (PIDStrategy == 1) { | ||
if (ptcand < 0.6) { | ||
if (TOFHit != 1 && TMath::Abs(nsigmaTPC) < cutNsigmaTPC) { | ||
return true; | ||
} | ||
if (TOFHit == 1 && TMath::Abs(nsigmaTOF) < cutNsigmaTOF) { | ||
return true; | ||
} | ||
} | ||
if (ptcand >= 0.6) { | ||
if (TOFHit == 1 && TMath::Abs(nsigmaTOF) < cutNsigmaTOF) { | ||
return true; | ||
} | ||
} | ||
} | ||
if (PIDStrategy == 2) { | ||
if (ptcand < 0.6) { | ||
if (TOFHit != 1 && TMath::Abs(nsigmaTPC) < cutNsigmaTPC) { | ||
return true; | ||
} | ||
if (TOFHit == 1 && TMath::Abs(nsigmaTOF) < cutNsigmaTOF) { | ||
return true; | ||
} | ||
} | ||
if (ptcand >= 0.6 && ptcand < 1.2) { | ||
if (TOFHit == 1 && TMath::Abs(nsigmaTOF) < cutNsigmaTOF) { | ||
return true; | ||
} | ||
if (TOFHit != 1 && nsigmaTPC > -1.5 && nsigmaTPC < cutNsigmaTPC) { | ||
return true; | ||
} | ||
} | ||
if (ptcand >= 1.2) { | ||
if (TOFHit == 1 && TMath::Abs(nsigmaTOF) < cutNsigmaTOF) { | ||
return true; | ||
} | ||
if (TOFHit != 1 && TMath::Abs(nsigmaTPC) < cutNsigmaTPC) { | ||
return true; | ||
} | ||
} | ||
} | ||
if (PIDStrategy == 3) { | ||
if (ptcand < 0.6) { | ||
if (TOFHit != 1 && TMath::Abs(nsigmaTPC) < cutNsigmaTPC) { | ||
return true; | ||
} | ||
if (TOFHit == 1 && TMath::Abs(nsigmaTOF) < cutNsigmaTOF) { | ||
return true; | ||
} | ||
} | ||
if (ptcand >= 0.6 && ptcand < 1.2) { | ||
if (TOFHit == 1 && TMath::Abs(nsigmaTOF) < cutNsigmaTOF) { | ||
return true; | ||
} | ||
} | ||
if (ptcand >= 1.2) { | ||
if (TOFHit == 1 && TMath::Abs(nsigmaTOF) < cutNsigmaTOF) { | ||
return true; | ||
} | ||
if (TOFHit != 1 && TMath::Abs(nsigmaTPC) < cutNsigmaTPC) { | ||
return true; | ||
} | ||
} | ||
} | ||
return false; | ||
} | ||
|
||
TLorentzVector exotic, Phid1, Phid2; | ||
TLorentzVector exoticRot, Phid1Rot; | ||
void process(aod::RedPhiEvents::iterator const& collision, aod::PhiTracks const& phitracks) | ||
{ | ||
if (additionalEvsel && (collision.numPos() < 2 || collision.numNeg() < 2)) { | ||
return; | ||
} | ||
for (auto phitrackd1 : phitracks) { | ||
if (phitrackd1.phiMass() < minPhiMass || phitrackd1.phiMass() > maxPhiMass) { | ||
continue; | ||
} | ||
|
||
auto kaonplusd1pt = TMath::Sqrt(phitrackd1.phid1Px() * phitrackd1.phid1Px() + phitrackd1.phid1Py() * phitrackd1.phid1Py()); | ||
auto kaonminusd1pt = TMath::Sqrt(phitrackd1.phid2Px() * phitrackd1.phid2Px() + phitrackd1.phid2Py() * phitrackd1.phid2Py()); | ||
|
||
if (!selectionPID(phitrackd1.phid1TPC(), phitrackd1.phid1TOF(), phitrackd1.phid1TOFHit(), strategyPID, kaonplusd1pt)) { | ||
continue; | ||
} | ||
if (!selectionPID(phitrackd1.phid2TPC(), phitrackd1.phid2TOF(), phitrackd1.phid2TOFHit(), strategyPID, kaonminusd1pt)) { | ||
continue; | ||
} | ||
|
||
histos.fill(HIST("hnsigmaTPCKaonPlus"), phitrackd1.phid1TPC(), kaonplusd1pt); | ||
histos.fill(HIST("hnsigmaTPCKaonMinus"), phitrackd1.phid2TPC(), kaonminusd1pt); | ||
Phid1.SetXYZM(phitrackd1.phiPx(), phitrackd1.phiPy(), phitrackd1.phiPz(), phitrackd1.phiMass()); | ||
histos.fill(HIST("hPhid1Mass"), Phid1.M(), Phid1.Pt()); | ||
auto phid1id = phitrackd1.index(); | ||
for (auto phitrackd2 : phitracks) { | ||
auto phid2id = phitrackd2.index(); | ||
if (phid2id <= phid1id) { | ||
continue; | ||
} | ||
if (phitrackd2.phiMass() < minPhiMass || phitrackd2.phiMass() > maxPhiMass) { | ||
continue; | ||
} | ||
auto kaonplusd2pt = TMath::Sqrt(phitrackd2.phid1Px() * phitrackd2.phid1Px() + phitrackd2.phid1Py() * phitrackd2.phid1Py()); | ||
auto kaonminusd2pt = TMath::Sqrt(phitrackd2.phid2Px() * phitrackd2.phid2Px() + phitrackd2.phid2Py() * phitrackd2.phid2Py()); | ||
|
||
if (!selectionPID(phitrackd2.phid1TPC(), phitrackd2.phid1TOF(), phitrackd2.phid1TOFHit(), strategyPID, kaonplusd2pt)) { | ||
continue; | ||
} | ||
if (!selectionPID(phitrackd2.phid2TPC(), phitrackd2.phid2TOF(), phitrackd2.phid2TOFHit(), strategyPID, kaonminusd2pt)) { | ||
continue; | ||
} | ||
if (phitrackd1.phid1Index() == phitrackd2.phid1Index()) { | ||
continue; | ||
} | ||
if (phitrackd1.phid2Index() == phitrackd2.phid2Index()) { | ||
continue; | ||
} | ||
Phid2.SetXYZM(phitrackd2.phiPx(), phitrackd2.phiPy(), phitrackd2.phiPz(), phitrackd2.phiMass()); | ||
exotic = Phid1 + Phid2; | ||
auto kstar = getkstar(Phid1, Phid2); | ||
histos.fill(HIST("SEMassUnlike"), exotic.M(), exotic.Pt(), Phid1.Pt(), Phid2.Pt(), kstar); | ||
if (fillRotation) { | ||
for (int nrotbkg = 0; nrotbkg < 9; nrotbkg++) { | ||
auto anglestart = 5.0 * TMath::Pi() / 6.0; | ||
auto angleend = 7.0 * TMath::Pi() / 6.0; | ||
auto anglestep = (angleend - anglestart) / (1.0 * (9.0 - 1.0)); | ||
auto rotangle = anglestart + nrotbkg * anglestep; | ||
auto rotd1px = Phid1.Px() * std::cos(rotangle) - Phid1.Py() * std::sin(rotangle); | ||
auto rotd1py = Phid1.Px() * std::sin(rotangle) + Phid1.Py() * std::cos(rotangle); | ||
Phid1Rot.SetXYZM(rotd1px, rotd1py, Phid1.Pz(), Phid1.M()); | ||
exoticRot = Phid1Rot + Phid2; | ||
auto kstar_rot = getkstar(Phid1Rot, Phid2); | ||
histos.fill(HIST("SEMassRot"), exoticRot.M(), exoticRot.Pt(), Phid1Rot.Pt(), Phid2.Pt(), kstar_rot); | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
SliceCache cache; | ||
using BinningTypeVertexContributor = ColumnBinningPolicy<aod::collision::PosZ, aod::collision::NumContrib>; | ||
void processMixedEvent(aod::RedPhiEvents& collisions, aod::PhiTracks& phitracks) | ||
{ | ||
auto tracksTuple = std::make_tuple(phitracks); | ||
BinningTypeVertexContributor binningOnPositions{{CfgVtxBins, CfgMultBins}, true}; | ||
SameKindPair<aod::RedPhiEvents, aod::PhiTracks, BinningTypeVertexContributor> pair{binningOnPositions, nEvtMixing, -1, collisions, tracksTuple, &cache}; | ||
|
||
for (auto& [collision1, tracks1, collision2, tracks2] : pair) { | ||
if (collision1.index() == collision2.index()) { | ||
continue; | ||
} | ||
for (auto& [phitrackd1, phitrackd2] : o2::soa::combinations(o2::soa::CombinationsFullIndexPolicy(tracks1, tracks2))) { | ||
if (phitrackd1.phiMass() < minPhiMass || phitrackd1.phiMass() > maxPhiMass) { | ||
continue; | ||
} | ||
|
||
auto kaonplusd1pt = TMath::Sqrt(phitrackd1.phid1Px() * phitrackd1.phid1Px() + phitrackd1.phid1Py() * phitrackd1.phid1Py()); | ||
auto kaonminusd1pt = TMath::Sqrt(phitrackd1.phid2Px() * phitrackd1.phid2Px() + phitrackd1.phid2Py() * phitrackd1.phid2Py()); | ||
auto kaonplusd2pt = TMath::Sqrt(phitrackd2.phid1Px() * phitrackd2.phid1Px() + phitrackd2.phid1Py() * phitrackd2.phid1Py()); | ||
auto kaonminusd2pt = TMath::Sqrt(phitrackd2.phid2Px() * phitrackd2.phid2Px() + phitrackd2.phid2Py() * phitrackd2.phid2Py()); | ||
|
||
if (!selectionPID(phitrackd1.phid1TPC(), phitrackd1.phid1TOF(), phitrackd1.phid1TOFHit(), strategyPID, kaonplusd1pt)) { | ||
continue; | ||
} | ||
if (!selectionPID(phitrackd1.phid2TPC(), phitrackd1.phid2TOF(), phitrackd1.phid2TOFHit(), strategyPID, kaonminusd1pt)) { | ||
continue; | ||
} | ||
Phid1.SetXYZM(phitrackd1.phiPx(), phitrackd1.phiPy(), phitrackd1.phiPz(), phitrackd1.phiMass()); | ||
if (phitrackd2.phiMass() < minPhiMass || phitrackd2.phiMass() > maxPhiMass) { | ||
continue; | ||
} | ||
if (!selectionPID(phitrackd2.phid1TPC(), phitrackd2.phid1TOF(), phitrackd2.phid1TOFHit(), strategyPID, kaonplusd2pt)) { | ||
continue; | ||
} | ||
if (!selectionPID(phitrackd2.phid2TPC(), phitrackd2.phid2TOF(), phitrackd2.phid2TOFHit(), strategyPID, kaonminusd2pt)) { | ||
continue; | ||
} | ||
Phid2.SetXYZM(phitrackd2.phiPx(), phitrackd2.phiPy(), phitrackd2.phiPz(), phitrackd2.phiMass()); | ||
exotic = Phid1 + Phid2; | ||
auto kstar = getkstar(Phid1, Phid2); | ||
histos.fill(HIST("MEMassUnlike"), exotic.M(), exotic.Pt(), Phid1.Pt(), Phid2.Pt(), kstar); | ||
if (fillRotation) { | ||
for (int nrotbkg = 0; nrotbkg < 9; nrotbkg++) { | ||
auto anglestart = 5.0 * TMath::Pi() / 6.0; | ||
auto angleend = 7.0 * TMath::Pi() / 6.0; | ||
auto anglestep = (angleend - anglestart) / (1.0 * (9.0 - 1.0)); | ||
auto rotangle = anglestart + nrotbkg * anglestep; | ||
auto rotd1px = Phid1.Px() * std::cos(rotangle) - Phid1.Py() * std::sin(rotangle); | ||
auto rotd1py = Phid1.Px() * std::sin(rotangle) + Phid1.Py() * std::cos(rotangle); | ||
Phid1Rot.SetXYZM(rotd1px, rotd1py, Phid1.Pz(), Phid1.M()); | ||
exoticRot = Phid1Rot + Phid2; | ||
auto kstar_rot = getkstar(Phid1Rot, Phid2); | ||
histos.fill(HIST("MEMassRot"), exoticRot.M(), exoticRot.Pt(), Phid1Rot.Pt(), Phid2.Pt(), kstar_rot); | ||
} | ||
} | ||
} | ||
} | ||
} | ||
PROCESS_SWITCH(doublephimeson, processMixedEvent, "Process EventMixing for combinatorial background", true); | ||
}; | ||
|
||
WorkflowSpec defineDataProcessing(ConfigContext const& cfgc) { return WorkflowSpec{adaptAnalysisTask<doublephimeson>(cfgc)}; } |