-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
175 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
""" A map of containing the number of times a particular sequence of values in a column of an event file. """ | ||
|
||
|
||
import pandas as pd | ||
from hed.tools.util.data_util import get_key_hash | ||
|
||
|
||
class SequenceMap: | ||
""" A map of unique sequences of column values of a particular length appear in an event file. | ||
Attributes: | ||
name (str): An optional name of this remap for identification purposes. | ||
Notes: This mapping converts all columns in the mapping to strings. | ||
The remapping does not support other types of columns. | ||
""" | ||
def __init__(self, codes=None, name=''): | ||
""" Information for setting up the maps. | ||
Parameters: | ||
codes (list or None): If None use all codes, otherwise only include listed codes in the map. | ||
name (str): Name associated with this remap (usually a pathname of the events file). | ||
""" | ||
|
||
self.codes = codes | ||
self.name = name | ||
self.node_counts = {} | ||
self.edges = {} # map of keys to n-element sequences | ||
self.edge_counts = {} # Keeps a running count of the number of times a key appears in the data | ||
|
||
@property | ||
|
||
def __str__(self): | ||
node_counts = [f"{value}({str(count)})" for value, count in self.node_counts.items()] | ||
node_str = (" ").join(node_counts) | ||
return node_str | ||
# temp_list = [f"{self.name} counts for key [{str(self.key_cols)}]:"] | ||
# for index, row in self.col_map.iterrows(): | ||
# key_hash = get_row_hash(row, self.columns) | ||
# temp_list.append(f"{str(list(row.values))}:\t{self.count_dict[key_hash]}") | ||
# return "\n".join(temp_list) | ||
|
||
def dot_str(self, group_spec={}): | ||
base = 'digraph g { \n' | ||
node_list = [f"{node};" for node in self.codes if node not in self.node_counts] | ||
if node_list: | ||
base = base + 'subgraph cluster_unused {\n bgcolor="#cAcAcA";\n' + ("\n").join(node_list) +"\n}\n" | ||
if group_spec: | ||
for group, spec in group_spec.items(): | ||
group_list = [f"{node};" for node in self.node_counts if node in spec["nodes"]] | ||
if group_list: | ||
spec_color = spec["color"] | ||
if spec_color[0] == '#': | ||
spec_color = f'"{spec_color}"' | ||
base = base + 'subgraph cluster_' + group + '{\n' + f'bgcolor={spec_color};\n' + \ | ||
'\n'.join(group_list) + '\n}\n' | ||
edge_list = [f"{value[0]} -> {value[1]} [label={str(self.edge_counts[key])}];" | ||
for key, value in self.edges.items()] | ||
dot_str = base + ("\n").join(edge_list) + "}\n" | ||
return dot_str | ||
|
||
# def resort(self): | ||
# """ Sort the col_map in place by the key columns. """ | ||
# self.col_map.sort_values(by=self.key_cols, inplace=True, ignore_index=True) | ||
# for index, row in self.col_map.iterrows(): | ||
# key_hash = get_row_hash(row, self.key_cols) | ||
# self.map_dict[key_hash] = index | ||
|
||
def update(self, data): | ||
""" Update the existing map with information from data. | ||
Parameters: | ||
data (Series): DataFrame or filename of an events file or event map. | ||
allow_missing (bool): If true allow missing keys and add as n/a columns. | ||
:raises HedFileError: | ||
- If there are missing keys and allow_missing is False. | ||
""" | ||
filtered = self.prep(data) | ||
if self.codes: | ||
mask = filtered.isin(self.codes) | ||
filtered = filtered[mask] | ||
for index, value in filtered.items(): | ||
if value not in self.node_counts: | ||
self.node_counts[value] = 1 | ||
else: | ||
self.node_counts[value] = self.node_counts[value] + 1 | ||
if index + 1 >= len(filtered): | ||
break | ||
key_list = filtered[index:index+2].tolist() | ||
key = get_key_hash(key_list) | ||
if key in self.edges: | ||
self.edge_counts[key] = self.edge_counts[key] + 1 | ||
else: | ||
self.edges[key] = key_list | ||
self.edge_counts[key] = 1 | ||
|
||
@staticmethod | ||
def prep(data): | ||
""" Remove quotes from the specified columns and convert to string. | ||
Parameters: | ||
data (Series): Dataframe to process by removing quotes. | ||
Returns: Series | ||
Notes: | ||
- Replacement is done in place. | ||
""" | ||
|
||
filtered = data.astype(str) | ||
filtered.fillna('n/a').astype(str) | ||
filtered = filtered.str.replace('"', '') | ||
filtered = filtered.str.replace("'", "") | ||
return filtered |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
import unittest | ||
import os | ||
import pandas as pd | ||
from hed.errors.exceptions import HedFileError | ||
from hed.tools.analysis.sequence_map import SequenceMap | ||
from hed.tools.util.data_util import get_new_dataframe | ||
from hed.tools.util.io_util import get_file_list | ||
|
||
|
||
class Test(unittest.TestCase): | ||
@classmethod | ||
def setUpClass(cls): | ||
# curation_base_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../data/remodel_tests') | ||
base_path = 'T:/summaryTests/ds004105-download' | ||
cls.events_path = os.path.realpath(base_path + '/sub-01/ses-01/eeg/sub-01_ses-01_task-DriveRandomSound_run-1_events.tsv') | ||
|
||
|
||
def test_constructor(self): | ||
codes1 = ['1111', '1112', '1121', '1122', '1131', '1132', '1141', | ||
'1142', '1311', '1312', '1321', '1322', | ||
'4210', '4220', '4230', '4311', '4312'] | ||
|
||
smap1 = SequenceMap(codes=codes1) | ||
self.assertIsInstance(smap1, SequenceMap) | ||
df = get_new_dataframe(self.events_path) | ||
data = df['value'] | ||
smap1.update(data) | ||
#print(f"{smap1.__str__}") | ||
print("to here") | ||
|
||
def test_update(self): | ||
codes1 = ['1111', '1121', '1131', '1141', '1311', '1321', | ||
'4210', '4220', '4230', '4311'] | ||
codes1 = ['1111', '1121', '1131', '1141', '1311', '4311'] | ||
#codes1 = ['1111', '1121', '1131', '1141', '1311'] | ||
smap1 = SequenceMap(codes=codes1) | ||
self.assertIsInstance(smap1, SequenceMap) | ||
df = get_new_dataframe(self.events_path) | ||
data = df['value'] | ||
smap1.update(data) | ||
print(f"{smap1.dot_str()}") | ||
group_spec = {"stimulus": {"color": "#FFAAAA", "nodes": ["1111", "1121", "1131", "1141", "1311"]}} | ||
print(f"{smap1.dot_str(group_spec=group_spec)}") | ||
|
||
def test_str(self): | ||
pass | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |