-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: Implement behavior evaluation module
This commit introduces a new module for evaluating behavior predictions against manually labeled data. The module provides functionality to: - Load and preprocess prediction and manual label data from CSV files. - Create fixed time intervals for analysis. - Align predicted and manual behaviors to these intervals, handling potential time offsets. - Calculate overall accuracy and per-behavior precision, recall, and F1-score. - Generate a confusion matrix visualization for detailed performance analysis.
- Loading branch information
1 parent
61bdcc8
commit 1adb292
Showing
1 changed file
with
117 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
import pandas as pd | ||
import numpy as np | ||
from sklearn.metrics import confusion_matrix, accuracy_score, precision_recall_fscore_support | ||
import matplotlib.pyplot as plt | ||
import seaborn as sns | ||
|
||
|
||
def _load_data(predicted_segments_path, manual_labels_path): | ||
"""Loads and preprocesses prediction and manual label data.""" | ||
try: | ||
predicted_df = pd.read_csv(predicted_segments_path) | ||
manual_df = pd.read_csv(manual_labels_path) | ||
except FileNotFoundError: | ||
raise FileNotFoundError("Could not find one or both CSV files.") | ||
except pd.errors.ParserError: # Handle potential parsing errors | ||
raise pd.errors.ParserError( | ||
"Error parsing CSV file(s). Check the format.") | ||
|
||
# Convert 'Recording time' to numeric and handle errors | ||
for df in [predicted_df, manual_df]: | ||
df['Recording time'] = pd.to_numeric( | ||
df['Recording time'], errors='coerce') | ||
# Remove rows with invalid times | ||
df.dropna(subset=['Recording time'], inplace=True) | ||
return predicted_df, manual_df | ||
|
||
|
||
def _create_time_intervals(start_time, end_time, interval_duration): | ||
"""Creates a DataFrame with fixed time intervals.""" | ||
return pd.DataFrame({'Recording time': np.arange(start_time, end_time + interval_duration, interval_duration)}) | ||
|
||
|
||
def _align_behaviors_to_intervals(df, intervals_df, tolerance): | ||
"""Aligns behavior labels to the nearest time interval.""" | ||
merged_df = intervals_df.copy() | ||
merged_df['Behavior'] = 'none of the above' | ||
|
||
for _, row in df.iterrows(): | ||
closest_time = intervals_df['Recording time'].iloc[( | ||
intervals_df['Recording time'] - row['Recording time']).abs().argsort()[0]] | ||
if abs(closest_time - row['Recording time']) <= tolerance: | ||
merged_df.loc[merged_df['Recording time'] == | ||
closest_time, 'Behavior'] = row['Behavior'] | ||
return merged_df | ||
|
||
|
||
def _calculate_metrics(y_true, y_pred): | ||
"""Calculates accuracy, precision, recall, and F1-score.""" | ||
accuracy = accuracy_score(y_true, y_pred) | ||
precision, recall, f1, _ = precision_recall_fscore_support( | ||
y_true, y_pred, average=None, labels=np.unique(y_true)) | ||
results_df = pd.DataFrame({ | ||
'Behavior': np.unique(y_true), | ||
'Precision': precision, | ||
'Recall': recall, | ||
'F1 Score': f1 | ||
}) | ||
return accuracy, results_df | ||
|
||
|
||
def evaluate_behavior_predictions(predicted_segments_path, manual_labels_path, interval_duration=3): | ||
"""Evaluates behavior predictions against manual labels using a fixed interval approach.""" | ||
|
||
predicted_df, manual_df = _load_data( | ||
predicted_segments_path, manual_labels_path) | ||
|
||
start_time = min(predicted_df['Recording time'].min( | ||
), manual_df['Recording time'].min()) | ||
end_time = max(predicted_df['Recording time'].max(), | ||
manual_df['Recording time'].max()) | ||
|
||
intervals_df = _create_time_intervals( | ||
start_time, end_time, interval_duration) | ||
|
||
tolerance = interval_duration / 2 | ||
merged_manual = _align_behaviors_to_intervals( | ||
manual_df, intervals_df, tolerance) | ||
merged_predicted = _align_behaviors_to_intervals( | ||
predicted_df, intervals_df, tolerance).rename(columns={"Behavior": "Behavior_predicted"}) | ||
|
||
merged_df = pd.merge(merged_manual, merged_predicted, | ||
on="Recording time", how="outer") | ||
|
||
y_true = merged_df['Behavior'] | ||
y_pred = merged_df['Behavior_predicted'] | ||
|
||
accuracy, results_df = _calculate_metrics(y_true, y_pred) | ||
|
||
return accuracy, results_df, merged_df | ||
|
||
|
||
def plot_confusion_matrix(y_true, y_pred): | ||
"""Plots the confusion matrix.""" | ||
cm = confusion_matrix(y_true, y_pred, labels=np.unique(y_true)) | ||
plt.figure(figsize=(10, 8)) | ||
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", | ||
xticklabels=np.unique(y_true), yticklabels=np.unique(y_true)) | ||
plt.xlabel("Predicted Label") | ||
plt.ylabel("True Label") | ||
plt.title("Confusion Matrix") | ||
plt.show() | ||
|
||
|
||
# Main execution block | ||
if __name__ == "__main__": | ||
predicted_path = '/content/predictions.csv' | ||
manual_path = '/content/ground_truth_annotations.csv' | ||
try: | ||
accuracy, results, merged_df = evaluate_behavior_predictions( | ||
predicted_path, manual_path) | ||
print(f"Overall Accuracy: {accuracy}") | ||
print("\nPer-Behavior Metrics:") | ||
print(results) | ||
plot_confusion_matrix( | ||
merged_df['Behavior'], merged_df['Behavior_predicted']) | ||
except (FileNotFoundError, pd.errors.ParserError) as e: | ||
print(f"Error: {e}") |