Skip to content

📚 The list of vision-based SLAM / Visual Odometry open source, blogs, and papers

Notifications You must be signed in to change notification settings

handyzeng/awesome-visual-slam

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 

Repository files navigation

The list of vision-based SLAM / Visual Odometry open source projects, libraries, dataset, tools, and studies

Awesome

Index

Libraries

Basic vision and trasformation libraries
Thread-safe queue libraries
Loop detection
Graph Optimization
Map library

Dataset

Dataset for benchmark/test/experiment/evalutation

Tools

Projects

RGB (Monocular):

[1] Georg Klein and David Murray, "Parallel Tracking and Mapping for Small AR Workspaces", Proc. ISMAR 2007 [2] Georg Klein and David Murray, "Improving the Agility of Keyframe-based SLAM", Proc. ECCV 2008

  • DSO. Available on ROS

Direct Sparse Odometry, J. Engel, V. Koltun, D. Cremers, In arXiv:1607.02565, 2016 A Photometrically Calibrated Benchmark For Monocular Visual Odometry, J. Engel, V. Usenko, D. Cremers, In arXiv:1607.02555, 2016

LSD-SLAM: Large-Scale Direct Monocular SLAM, J. Engel, T. Schöps, D. Cremers, ECCV '14 Semi-Dense Visual Odometry for a Monocular Camera, J. Engel, J. Sturm, D. Cremers, ICCV '13

[1] Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE > Transactions on Robotics, vol. 31, no. 5, pp. 1147-1163, 2015. (2015 IEEE Transactions on Robotics Best Paper Award). PDF. [2] Dorian Gálvez-López and Juan D. Tardós. Bags of Binary Words for Fast Place Recognition in Image Sequences. IEEE > Transactions on Robotics, vol. 28, no. 5, pp. 1188-1197, 2012. PDF.

D. Nister, “An efficient solution to the five-point relative pose problem,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 26, no. 6, pp. 756–770, 2004.

Christian Forster, Matia Pizzoli, Davide Scaramuzza, "SVO: Fast Semi-direct Monocular Visual Odometry," IEEE International Conference on Robotics and Automation, 2014.

RGB and Depth (Called RGBD):

Real-Time Visual Odometry from Dense RGB-D Images, F. Steinbucker, J. Strum, D. Cremers, ICCV, 2011

[1]Dense Visual SLAM for RGB-D Cameras (C. Kerl, J. Sturm, D. Cremers), In Proc. of the Int. Conf. on Intelligent Robot Systems (IROS), 2013. [2]Robust Odometry Estimation for RGB-D Cameras (C. Kerl, J. Sturm, D. Cremers), In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2013 [3]Real-Time Visual Odometry from Dense RGB-D Images (F. Steinbruecker, J. Sturm, D. Cremers), In Workshop on Live Dense Reconstruction with Moving Cameras at the Intl. Conf. on Computer Vision (ICCV), 2011.

Online Global Loop Closure Detection for Large-Scale Multi-Session Graph-Based SLAM, 2014 Appearance-Based Loop Closure Detection for Online Large-Scale and Long-Term Operation, 2013

[1] Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE > Transactions on Robotics, vol. 31, no. 5, pp. 1147-1163, 2015. (2015 IEEE Transactions on Robotics Best Paper Award). [2] Dorian Gálvez-López and Juan D. Tardós. Bags of Binary Words for Fast Place Recognition in Image Sequences. IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1188-1197, 2012.

Kahler, O. and Prisacariu, V.~A. and Ren, C.~Y. and Sun, X. and Torr, P.~H.~S and Murray, D.~W. Very High Frame Rate Volumetric Integration of Depth Images on Mobile Device. IEEE Transactions on Visualization and Computer Graphics (Proceedings International Symposium on Mixed and Augmented Reality 2015

Real-time Large Scale Dense RGB-D SLAM with Volumetric Fusion, T. Whelan, M. Kaess, H. Johannsson, M.F. Fallon, J. J. Leonard and J.B. McDonald, IJRR '14

[1] ElasticFusion: Real-Time Dense SLAM and Light Source Estimation, T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison and S. Leutenegger, IJRR '16 [2] ElasticFusion: Dense SLAM Without A Pose Graph, T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker and A. J. Davison, RSS '15

Martin Rünz and Lourdes Agapito. Co-Fusion: Real-time Segmentation, Tracking and Fusion of Multiple Objects. 2017 IEEE International Conference on Robotics and Automation (ICRA)

RGBD and LIDAR:

License

CC0

About

📚 The list of vision-based SLAM / Visual Odometry open source, blogs, and papers

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published