This repository provides the official PyTorch implementation of the following paper: A Deep Learning Model for Multi-Domain MRI Synthesis Using Generative Adversarial Networks
- Python 3.5+
- PyTorch 0.4.0+
- TensorFlow 1.3+ (optional for tensorboard)
python -m venv venv
. venv/bin/activate
pip install -r requirements.txt
To train model on both BraTS2020 and IXI:
# Train Customed ResUnet using both BraTS2020 and IXI datasets
python main.py --mode=train --dataset Both --image_size 256 --c_dim 4 --c2_dim 4 \
--sample_dir resunet_custom_new_loss_both/samples --log_dir resunet_custom_new_loss_both/logs \
--model_save_dir resunet_custom_new_loss_both/models --result_dir resunet_custom_new_loss_both/results \
--batch_size 4
# Test Customed ResUnet using both BraTS2020 and IXI datasets
python main.py --mode test --dataset Both --image_size 256 --c_dim 4 --c2_dim 4 \
--sample_dir resunet_custom_new_loss_both/samples --log_dir resunet_custom_new_loss_both/logs \
--model_save_dir resunet_custom_new_loss_both/models --result_dir resunet_custom_new_loss_both/results \
--batch_size 4
If you find this work useful for your research, please cite paper:
@article{han2024,
author = {Le Hoang Ngoc Han and Ngo Le Huy Hien and Luu Van Huy and Nguyen Van Hieu},
title = {A Deep Learning Model for Multi-Domain MRI Synthesis Using Generative Adversarial Networks},
journal = {Informatica},
volume = {35},
number = {2},
pages = {283-309},
year = {2024},
doi = {10.15388/24-INFOR556}
}