Skip to content

grf-labs/sufrep

Repository files navigation

sufrep: Sufficient Representations of Categorical Variables

This package implements the methods for providing sufficient representations of categorical variables mentioned in Johannemann et al. (2019).

To install this package, run the following command in R (assuming you have installed devtools).

devtools::install_github("grf-labs/sufrep")

Example usage:

library(sufrep)

set.seed(12345)
n <- 100
p <- 3

X <- matrix(rnorm(n * p), n, p)
G <- as.factor(sample(5, size = n, replace = TRUE))

# One-hot encoding
onehot_encoder <- make_encoder(X = X, G = G, method = "one_hot")

train.df <- onehot_encoder(X = X, G = G)
print(head(train.df))

#         [,1]    [,2]    [,3] [,4] [,5] [,6] [,7]
# [1,]  0.5855  0.2239 -1.4361    0    0    0    1
# [2,]  0.7095 -1.1562 -0.6293    1    0    0    0
# [3,] -0.1093  0.4224  0.2435    0    0    1    0
# [4,] -0.4535 -1.3248  1.0584    0    0    0    1
# [5,]  0.6059  0.1411  0.8313    0    1    0    0
# [6,] -1.8180 -0.5360  0.1052    0    0    0    0

# "Means" encoding
means_encoder <- make_encoder(X = X, G = G, method = "means")

train.df <- means_encoder(X = X, G = G)
print(head(train.df))

#           [,1]      [,2]      [,3]     [,4]      [,5]       [,6]
# [1,]  0.585529  0.223925 -1.436146 0.103683 -0.187225 -0.1909485
# [2,]  0.709466 -1.156223 -0.629260 0.103683 -0.187225 -0.1909485
# [3,] -0.109303  0.422419  0.243522 0.427721  0.208770  0.0246111
# [4,] -0.453497 -1.324755  1.058362 0.195713 -0.207266  0.1346758
# [5,]  0.605887  0.141084  0.831349 0.195713 -0.207266  0.1346758
# [6,] -1.817956 -0.536048  0.105212 0.195713 -0.207266  0.1346758

References

Jonathan Johannemann, Vitor Hadad, Susan Athey, and Stefan Wager. Sufficient Representations of Categorical Variables. 2019.

Releases

No releases published

Packages

No packages published