Install following libraries and packages in a conda environment:
conda create -n fuse2control python=3.7.5
conda activate fuse2control
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
pip3 install -r requirements.txt
pip install Box2D sklearn wget
We provide algorithms included in the paper, e.g. MVSSM
(ours), MVTCAE
, SLAC
, CMC
or Vanilla-RL
.
Experiments can be started by running main.py
as follows:
python main.py --method=$METHOD --missing_view_num=$MISSING_VIEW_NUM --seed=$SEED --use_collected_data=$USE_COLLECTED_DATA
- To choose among running the MVSSM, MVTCAE, SLAC, CMC and Vanilla-RL, you need to set the value of variable
$METHOD
toMVSSM
,MVTCAE
,SLAC
,CMC
orVanilla-RL
respectively. - To choose the number of missing views, you need to change the value of variable
$MISSING_VIEW_NUM
to0
,1
,2
,3
or4
respectively. - To choose the random seed, you need to change the value of variable
$SEED
to0
,1
,2
,3
or4
respectively. - To collect dataset on your own (instead of using pre-collected dataset), you need to change the value of variable
$USE_COLLECTED_DATA
toFalse
.
(Example)
python main.py --method=MVSSM --missing_view_num=0 --seed=0 --use_collected_data=True
We used 40 CPU instances (n1-highcpu-32) from Google Cloud Platform(GCP).
All the numbers are averaged over 5 different seeds (0~4).
We appreciate PPO-PyTorch which our implementation is heavily based on.