Skip to content

Commit

Permalink
Merge pull request #1227 from leandroleal:main
Browse files Browse the repository at this point in the history
PiperOrigin-RevId: 703517436
  • Loading branch information
copybara-github committed Dec 6, 2024
2 parents 1301663 + 505173f commit 5fa7825
Show file tree
Hide file tree
Showing 15 changed files with 586 additions and 1 deletion.
1 change: 1 addition & 0 deletions catalog/catalog.jsonnet
Original file line number Diff line number Diff line change
Expand Up @@ -126,5 +126,6 @@ local self_url = base_url + base_filename;
ee.link.child_catalog('ngis-cat', base_url),
ee.link.child_catalog('planet-nicfi', base_url),
ee.link.child_catalog('sat-io', base_url),
ee.link.child_catalog('global-pasture-watch', base_url),
],
}
28 changes: 28 additions & 0 deletions catalog/global-pasture-watch/catalog.jsonnet
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
local id = 'global-pasture-watch';
local subdir = id;

local description = importstr 'description.md';
local ee_const = import 'earthengine_const.libsonnet';
local ee = import 'earthengine.libsonnet';

local basename = 'catalog';
local base_filename = basename + '.json';
local base_url = ee_const.catalog_base + subdir + '/';
local parent_url = ee_const.catalog_base + 'catalog.json';
local self_url = base_url + base_filename;

{
stac_version: ee_const.stac_version,
type: ee_const.stac_type.catalog,
id: id,
title: id,
description: description,
links: [
ee.link.root(),
ee.link.parent(parent_url),
ee.link.self_link(self_url),
ee.link.child_collection('projects_global-pasture-watch_assets_ggc-30m_v1_grassland_c', base_url),
ee.link.child_collection('projects_global-pasture-watch_assets_ggc-30m_v1_cultiv-grassland_p', base_url),
ee.link.child_collection('projects_global-pasture-watch_assets_ggc-30m_v1_nat-semi-grassland_p', base_url),
],
}
1 change: 1 addition & 0 deletions catalog/global-pasture-watch/description.md
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
The Land & Carbon Lab, convened by the World Resources Institute (WRI) and the Bezos Earth Fund, established the Global Pasture Watch research consortium. The consortium, which is made up of experts in geospatial monitoring, machine learning, ecology and agriculture across some of the world's leading research institutions, is developing global products for grasslands and livestock grazing in the 21st century.
56 changes: 56 additions & 0 deletions catalog/global-pasture-watch/ggc-30m_v1.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
Produced by Land &
Carbon Lab Global Pasture Watch initiative, the mapped grassland extent
includes any land cover type, which contains at least 30% of dry or wet
low vegetation, dominated by grasses and forbs (less than 3 meters)
and a:

- maximum of 50% tree canopy cover (greater than 5 meters),
- maximum of 70% of other woody vegetation (scrubs and open shrubland), and
- maximum of 50% active cropland cover in mosaic landscapes of cropland
& other vegetation.

The grassland extent is classified into two classes:
- **Cultivated grassland**: Areas where grasses and other forage plants have
been intentionally planted and managed, as well as areas of native
grassland-type vegetation where they clearly exhibit active and
heavy management for specific human-directed uses, such as directed
grazing of livestock.
- **Natural/Semi-natural grassland**: Relatively undisturbed native
grasslands/short-height vegetation, such as steppes and tundra,
as well as areas that have experienced varying degrees of human
activity in the past, which may contain a mix of native and
introduced species due to historical land use and natural processes.
In general, they exhibit natural-looking patterns of varied vegetation
and clearly ordered hydrological relationships throughout the landscape.

The implemented methodology considered [GLAD Landsat ARD-2 images
](https://glad.umd.edu/ard) (processed into cloud-free bi-monthly
aggregates, see [Consoli et al, 2024](https://doi.org/10.7717/peerj.18585)
), accompanied by climatic, landform and proximity covariates,
spatiotemporal machine learning (per-class Random Forest) and over
2.3 million reference samples (visually interpreted in Very High
Resolution imagery). Custom probability thresholds (based on five-fold
spatial cross-validation and balanced precision and recall values)
were used to derive dominant class maps, 0.32 and 0.42 for
cultivated and natural/semi-natural grassland probability thresholds, respectively.

**Limitations:** Grassland extent is partly under-predicted in southeastern
Africa (Zimbabwe and Mozambique) and in eastern Australia (shrublands and
woodlands of the Mulga ecoregion). Cropland is misclassified as grassland
in parts of northern Africa, the Arabian Peninsula, Western Australia,
New Zealand, the center of Bolivia, and Mato Grosso state (Brazil). Due
to the Landsat 7 SLC failure, regular stripes of grassland probabilities
are visible at parcel-level, particularly in the year 2012. The usage of
coarser resolution layers (accessibility maps and MODIS products)
introduced curvilinear macroscopic errors (due to the downscaling
strategy based on cubicspline) in Uruguay, Southwest Argentina, South
of Angola and in the Sahel region in Africa. Users need to be aware
of the limitations and known issues; whilst considering them
carefully to ensure appropriate use of maps at this initial prediction
stage. GPW is working actively to collect systematic feedback [Geo-Wiki
platform](https://www.geo-wiki.org), validate the current version
and improve future versions of the dataset.

**For more information see [Parente et. al, 2024](http://doi.org/10.1038/s41597-024-04139-6),
[Zenodo](https://zenodo.org/records/13890401) and
[https://github.com/wri/global-pasture-watch](https://github.com/wri/global-pasture-watch)**
Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
local id = 'projects/global-pasture-watch/assets/ggc-30m/v1/cultiv-grassland_p';
local subdir = 'global-pasture-watch';
local version = '1';

local ee_const = import 'earthengine_const.libsonnet';
local ee = import 'earthengine.libsonnet';
local spdx = import 'spdx.libsonnet';
local units = import 'units.libsonnet';
local ggc30m_v1 = importstr 'ggc-30m_v1.md';
local license = spdx.cc_by_4_0;

local basename = std.strReplace(id, '/', '_');
local self_ee_catalog_url = ee_const.ee_catalog_url + basename;

{
id: id,
title: 'GPW Annual Probabilities of Cultivated Grasslands v' + version,
version: version,
description: |||
This dataset provides global annual probability maps of cultivated
grassland from 2000 to 2022 at 30-m spatial resolution.
||| + ggc30m_v1,
keywords: [
'land',
'landcover',
'landuse',
'global',
'vegetation'
],

providers: [
ee.producer_provider('Land and Carbon Lab Global Pasture Watch', 'https://landcarbonlab.org/data/global-grassland-and-livestock-monitoring'),
ee.host_provider(self_ee_catalog_url),
],
extent: ee.extent_global('2000-01-01T00:00:00Z', '2023-01-01T00:00:00Z'),
summaries: {
'eo:bands': [
{
name: 'probability',
description: 'Cultivated grassland probability value derived through Random Forest.',
gsd: 30
}
],
probability: {minimum: 0, maximum: 100, 'gee:estimated_range': false},
'gee:visualizations': [
{
display_name: 'Cultivated grassland probability value',
lookat: {lon: -55.50, lat: -12.20, zoom: 4},
image_visualization: {
band_vis: {
min: [0],
max: [100],
palette: [
'f5f5f5',
'fdaf27',
'ae7947',
'3a2200'
],
bands: ['probability'],
}
},
}
],
'gee:schema': [
{
name: 'version',
description: 'Product version',
type: ee_const.var_type.int
},
],
},

'gee:interval': {
type: 'cadence',
unit: 'year',
interval: 1,
},

'sci:doi': '10.5281/zenodo.13890401',
'sci:citation': |||
Parente, L., Sloat, L., Mesquita, V., et al. (2024)
Global Pasture Watch - Annual grassland class and extent
maps at 30-m spatial resolution (2000—2022) (Version v1)
[Data set]. Zenodo
[doi:https://doi.org/10.5281/zenodo.13890401](https://doi.org/10.5281/zenodo.13890401)
|||,
'sci:publications': [
{
citation: |||
Parente, L., Sloat, L., Mesquita, V., et al. (2024).
Annual 30-m maps of global grassland class and extent (2000–2022)
based on spatiotemporal Machine Learning, Scientific Data.
[doi: http://doi.org/10.1038/s41597-024-04139-6](http://doi.org/10.1038/s41597-024-04139-6)
|||,
doi: '10.1038/s41597-024-04139-6',
}
],
'gee:terms_of_use': ee.gee_terms_of_use(license),
// TODO(google): Remove gee:status when the dataset is ready.
'gee:status': 'beta',
'gee:type': ee_const.gee_type.image_collection,
license: license.id,
links: ee.standardLinks(subdir, id),
type: ee_const.stac_type.collection,
stac_version: ee_const.stac_version,
stac_extensions: [
ee_const.ext_eo,
ee_const.ext_sci,
ee_const.ext_ver,
],
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
local id = 'projects/global-pasture-watch/assets/ggc-30m/v1/grassland_c';
local subdir = 'global-pasture-watch';
local version = '1';

local ee_const = import 'earthengine_const.libsonnet';
local ee = import 'earthengine.libsonnet';
local spdx = import 'spdx.libsonnet';
local units = import 'units.libsonnet';
local ggc30m_v1 = importstr 'ggc-30m_v1.md';
local license = spdx.cc_by_4_0;

local basename = std.strReplace(id, '/', '_');
local self_ee_catalog_url = ee_const.ee_catalog_url + basename;

{
id: id,
title: 'GPW Annual Dominant Class of Crasslands v' + version,
version: version,
description: |||
This dataset provides global annual dominant class maps of grasslands
(cultivated and natural/semi-natural) from 2000 to 2022 at 30-m spatial
resolution.
||| + ggc30m_v1,
keywords: [
'land',
'landcover',
'landuse',
'global',
'vegetation'
],

providers: [
ee.producer_provider('Land and Carbon Lab Global Pasture Watch', 'https://landcarbonlab.org/data/global-grassland-and-livestock-monitoring'),
ee.host_provider(self_ee_catalog_url),
],
extent: ee.extent_global('2000-01-01T00:00:00Z', '2023-01-01T00:00:00Z'),
summaries: {
'eo:bands': [
{
name: 'dominant_class',
description: 'Dominant class derived through Random Forest and probability maps.',
gsd: 30,
'gee:classes': [
{value: 0, color: 'ffffff', description: 'Other'},
{value: 1, color: 'ff9916', description: 'Cultivated grassland '},
{value: 2, color: 'ffcd73', description: 'Natural/Semi-natural grassland'},
],
}
],
dominant_class: {minimum: 0, maximum: 2, 'gee:estimated_range': false},
'gee:visualizations': [
{
display_name: 'Dominant grassland class',
lookat: {lon: -55.50, lat: -12.20, zoom: 4},
image_visualization: {
band_vis: {
min: [0],
max: [2],
palette: [
'ffffff',
'ff9916',
'ffcd73'
],
bands: ['dominant_class'],
}
},
}
],
'gee:schema': [
{
name: 'version',
description: 'Product version',
type: ee_const.var_type.int
},
],
},
'gee:interval': {
type: 'cadence',
unit: 'year',
interval: 1,
},

'sci:doi': '10.5281/zenodo.13890401',
'sci:citation': |||
Parente, L., Sloat, L., Mesquita, V., et al. (2024)
Global Pasture Watch - Annual grassland class and extent
maps at 30-m spatial resolution (2000—2022) (Version v1)
[Data set]. Zenodo
[doi:https://doi.org/10.5281/zenodo.13890401](https://doi.org/10.5281/zenodo.13890401)
|||,
'sci:publications': [
{
citation: |||
Parente, L., Sloat, L., Mesquita, V., et al. (2024).
Annual 30-m maps of global grassland class and extent (2000–2022)
based on spatiotemporal Machine Learning, Scientific Data.
[doi: http://doi.org/10.1038/s41597-024-04139-6](http://doi.org/10.1038/s41597-024-04139-6)
|||,
doi: '10.1038/s41597-024-04139-6',
}
],
'gee:terms_of_use': ee.gee_terms_of_use(license),
// TODO(google): Remove gee:status when the dataset is ready.
'gee:status': 'beta',
'gee:type': ee_const.gee_type.image_collection,
license: license.id,
links: ee.standardLinks(subdir, id),
type: ee_const.stac_type.collection,
stac_version: ee_const.stac_version,
stac_extensions: [
ee_const.ext_eo,
ee_const.ext_sci,
ee_const.ext_ver,
],
}
Loading

0 comments on commit 5fa7825

Please sign in to comment.