-
Notifications
You must be signed in to change notification settings - Fork 42
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Tool for importing TFRecord embedding datasets into new database format.
PiperOrigin-RevId: 661060569
- Loading branch information
1 parent
0402b78
commit 1d21072
Showing
4 changed files
with
278 additions
and
160 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
# coding=utf-8 | ||
# Copyright 2024 The Perch Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""Conversion for TFRecord embeddings to Hoplite DB.""" | ||
|
||
import os | ||
from chirp.inference import embed_lib | ||
from chirp.inference import tf_examples | ||
from chirp.projects.agile2 import embed | ||
from chirp.projects.hoplite import in_mem_impl | ||
from chirp.projects.hoplite import interface | ||
from chirp.projects.hoplite import sqlite_impl | ||
from etils import epath | ||
import numpy as np | ||
import tqdm | ||
|
||
|
||
def convert_tfrecords( | ||
embeddings_path: str, | ||
db_type: str, | ||
dataset_name: str, | ||
max_count: int = -1, | ||
**kwargs, | ||
): | ||
"""Convert a TFRecord embeddings dataset to a Hoplite DB.""" | ||
ds = tf_examples.create_embeddings_dataset( | ||
embeddings_path, | ||
'embeddings-*', | ||
) | ||
# Peek at one embedding to get the embedding dimension. | ||
for ex in ds.as_numpy_iterator(): | ||
emb_dim = ex['embedding'].shape[-1] | ||
break | ||
else: | ||
raise ValueError('No embeddings found.') | ||
|
||
if db_type == 'sqlite': | ||
db_path = kwargs['db_path'] | ||
if epath.Path(db_path).exists(): | ||
raise ValueError(f'DB path {db_path} already exists.') | ||
db = sqlite_impl.SQLiteGraphSearchDB.create(db_path, embedding_dim=emb_dim) | ||
elif db_type == 'in_mem': | ||
db = in_mem_impl.InMemoryGraphSearchDB.create( | ||
embedding_dim=emb_dim, | ||
max_size=kwargs['max_size'], | ||
degree_bound=kwargs['degree_bound'], | ||
) | ||
else: | ||
raise ValueError(f'Unknown db type: {db_type}') | ||
db.setup() | ||
|
||
# Convert embedding config to new format and insert into the DB. | ||
legacy_config = embed_lib.load_embedding_config(embeddings_path) | ||
model_config = embed.ModelConfig( | ||
model_key=legacy_config.embed_fn_config.model_key, | ||
model_config=legacy_config.embed_fn_config.model_config, | ||
) | ||
file_id_depth = legacy_config.embed_fn_config['file_id_depth'] | ||
audio_globs = [] | ||
for glob in legacy_config.source_file_patterns: | ||
new_glob = glob.split('/')[-file_id_depth - 1 :] | ||
audio_globs.append(new_glob) | ||
|
||
embed_config = embed.EmbedConfig( | ||
audio_globs={dataset_name: tuple(audio_globs)}, | ||
min_audio_len_s=legacy_config.embed_fn_config.min_audio_s, | ||
target_sample_rate_hz=legacy_config.embed_fn_config.get( | ||
'target_sample_rate_hz', -1 | ||
), | ||
) | ||
db.insert_metadata('legacy_config', legacy_config) | ||
db.insert_metadata('embed_config', embed_config.to_config_dict()) | ||
db.insert_metadata('model_config', model_config.to_config_dict()) | ||
hop_size_s = model_config.model_config.hop_size_s | ||
|
||
for ex in tqdm.tqdm(ds.as_numpy_iterator()): | ||
embs = ex['embedding'] | ||
print(embs.shape) | ||
flat_embeddings = np.reshape(embs, [-1, embs.shape[-1]]) | ||
file_id = str(ex['filename'], 'utf8') | ||
offset_s = ex['timestamp_s'] | ||
if max_count > 0 and db.count_embeddings() >= max_count: | ||
break | ||
for i in range(flat_embeddings.shape[0]): | ||
embedding = flat_embeddings[i] | ||
offset = np.array(offset_s + hop_size_s * i) | ||
source = interface.EmbeddingSource(dataset_name, file_id, offset) | ||
db.insert_embedding(embedding, source) | ||
if max_count > 0 and db.count_embeddings() >= max_count: | ||
break | ||
db.commit() | ||
num_embeddings = db.count_embeddings() | ||
print('\n\nTotal embeddings : ', num_embeddings) | ||
hours_equiv = num_embeddings / 60 / 60 * hop_size_s | ||
print(f'\n\nHours of audio equivalent : {hours_equiv:.2f}') | ||
return db |
Oops, something went wrong.