-
Notifications
You must be signed in to change notification settings - Fork 108
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Declarative Graphing + JSON/DataFrames (#482)
- Loading branch information
Showing
2 changed files
with
373 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,372 @@ | ||
|
||
|
||
' # Declarative Graphing | ||
This example shows how to use Dex to generate interactive | ||
graphs using a declarative graph library known as Vega-Lite. | ||
To do this we will first implement a small JSON serialization library | ||
and then a Dex interface to produce graph outputs. | ||
|
||
' ## JSON Implementation | ||
|
||
def join (joiner: List a) (lists:n=>(List a)) : List a = | ||
-- Join together lists with an intermediary joiner | ||
concat $ for i. | ||
case ordinal i == (size n - 1) of | ||
True -> lists.i | ||
False -> lists.i <> joiner | ||
|
||
' A serialized JSON Value | ||
|
||
-- TODO - once Dex supports recursive ADT JValue becomes Value. | ||
data JValue = AsJValue String | ||
|
||
' Simple JSON Data Type | ||
|
||
data Value = | ||
AsObject (List (String & JValue)) | ||
AsArray (List JValue) | ||
AsString String | ||
AsFloat Float | ||
AsInt Int | ||
AsNone | ||
|
||
interface ToJSON a | ||
toJSON : a -> Value | ||
|
||
instance Show JValue | ||
show = \ (AsJValue a). a | ||
|
||
' Serialization Methods | ||
|
||
def toJValue (x:Value) : JValue = | ||
AsJValue $ case x of | ||
AsString y -> "\"" <> y <> "\"" | ||
AsFloat y -> show y | ||
AsInt y -> show y | ||
AsObject (AsList _ y) -> | ||
("{" <> (join ", " $ for i. | ||
(k, v) = y.i | ||
"\"" <> k <> "\"" <> ":" <> (show v)) <> "}") | ||
AsArray (AsList _ y) -> ("[" <> (join ", " $ for i. show y.i) <> "]") | ||
AsNone -> "" | ||
|
||
def serialize [ToJSON a] (x:a) : JValue = | ||
toJValue $ toJSON x | ||
|
||
instance Show Value | ||
show = \x. show $ toJValue x | ||
|
||
' Type classes for JSON conversion | ||
|
||
instance ToJSON String | ||
toJSON = AsString | ||
|
||
instance ToJSON Int | ||
toJSON = AsInt | ||
|
||
instance ToJSON Float | ||
toJSON = AsFloat | ||
|
||
instance ToJSON Value | ||
toJSON = id | ||
|
||
instance [ToJSON v] ToJSON (n => v) | ||
toJSON = \x . | ||
sizen = (size n) | ||
tab = castTable (Fin sizen) $ for i. serialize x.i | ||
AsArray $ AsList sizen tab | ||
|
||
instance [ToJSON v] ToJSON (List v) | ||
toJSON = \(AsList _ x) . toJSON x | ||
|
||
instance [ToJSON v] ToJSON (n => (String & v)) | ||
|
||
toJSON = \x . | ||
sizen = (size n) | ||
tab = castTable (Fin sizen) $ for i. (fst x.i, serialize $ snd x.i) | ||
AsObject $ AsList _ tab | ||
|
||
instance [ToJSON v] ToJSON (List (String & v)) | ||
toJSON = \(AsList _ x) . toJSON x | ||
|
||
|
||
def wrapCol [ToJSON d] (iso: Iso a (d & c)) (x:n=>a) : n=> Value = | ||
-- Helper function. Returns JSON of a column of a record | ||
for i. toJSON $ getAt iso x.i | ||
|
||
' ## Declarative Graph Grammars | ||
Graph grammars are a style of graphing that aims to separate the data representation | ||
from the graph layout. The main idea is to represent the underlying data as a flat | ||
sequence of aligned rows (colloquially a `dataframe`) and separately describe the graph | ||
layout based on a grammar. | ||
|
||
' Here we implement a subset of the Vega-Lite (https://vega.github.io/vega-lite/) specification for | ||
graphing. Vega-Lite lets you make a large set of charts using a very small grammar. | ||
|
||
|
||
' We will have several pieces of metadata. A header string, encoding type, and the | ||
channels that the data is displayed with. | ||
|
||
Header = String | ||
|
||
|
||
data EncodingType = | ||
Quantitative | ||
Nominal | ||
Ordinal | ||
|
||
instance Show EncodingType | ||
show = (\ x. | ||
case x of | ||
Quantitative -> "quantitative" | ||
Nominal -> "nominal" | ||
Ordinal -> "ordinal") | ||
|
||
|
||
data Channel = | ||
Y | ||
X | ||
Color | ||
Tooltip | ||
HREF | ||
Row | ||
Col | ||
Size | ||
|
||
instance Show Channel | ||
show = (\ x. | ||
case x of | ||
Y -> "y" | ||
X -> "x" | ||
Color -> "color" | ||
Tooltip -> "tooltip" | ||
HREF -> "href" | ||
Size -> "size" | ||
Row -> "row" | ||
Col -> "col") | ||
|
||
|
||
' The final aspect of Vega-Lite is the Mark. | ||
The mark tells it what kind of graph to draw, and the channels | ||
allow us to assign different columns to different roles. | ||
We implement these as simple data types, ideally these would be | ||
derived from the spec. | ||
|
||
|
||
data Mark = | ||
Area | ||
Bar | ||
Circle | ||
Line | ||
Point | ||
Rect | ||
Rule | ||
Square | ||
Text | ||
Tick | ||
|
||
instance Show Mark | ||
show = (\ x. | ||
case x of | ||
Area -> "area" | ||
Bar -> "bar" | ||
Circle -> "circle" | ||
Line -> "line" | ||
Point -> "point" | ||
Rect -> "rect" | ||
Rule-> "rule" | ||
Square -> "square" | ||
Tick -> "tick") | ||
|
||
' Most things in VL can take in extra visual options. | ||
To avoid specifying these, we will take in as | ||
JSON. | ||
|
||
data Opts a = | ||
WithOpts a Value | ||
|
||
def pure (x:a) : Opts a = | ||
WithOpts x AsNone | ||
|
||
def pureLs (x:a) : List (Opts a) = | ||
AsList 1 [WithOpts x AsNone] | ||
|
||
def mergeOpts [ToJSON a, ToJSON b] (x : a) (y : b) : Value = | ||
case toJSON x of | ||
(AsObject x') -> case toJSON y of | ||
(AsObject y') -> AsObject $ x' <> y' | ||
(AsNone) -> AsObject x' | ||
(AsNone) -> toJSON y | ||
|
||
|
||
|
||
data VLChart row col v = | ||
AsVLDescriptor (Opts Mark) v (col => ({title: Header & | ||
encType: EncodingType & | ||
encodings: List (Opts Channel) & | ||
rows: row => Value | ||
})) | ||
|
||
instance [ToJSON v] ToJSON (VLChart r c v) | ||
toJSON = \ x. | ||
(AsVLDescriptor mark opts df) = x | ||
-- Make the mark | ||
(WithOpts mtype options) = mark | ||
jmark = ("mark", mergeOpts options [("type", show mtype)]) | ||
|
||
-- Make the data | ||
jdf = toJSON $ for row : r. toJSON $ for col : c. | ||
("col" <> (show $ ordinal col), | ||
toJSON (getAt #rows df.col).row) | ||
jdata = ("data", toJSON [("values", jdf)]) | ||
|
||
-- Make the encodings | ||
jencodings = toJSON $ concat $ for col : c. | ||
(AsList v encopts) = getAt #encodings df.col | ||
AsList v $ for f. | ||
(WithOpts channel encoptions) = encopts.f | ||
(show channel, | ||
mergeOpts encoptions | ||
[ | ||
("field", "col" <> (show $ ordinal col)), | ||
("type", show $ getAt #encType df.col), | ||
("title", getAt #title df.col) | ||
]) | ||
jencode = ("encoding", jencodings) | ||
mergeOpts opts [jdata, jmark, jencode] | ||
|
||
|
||
def showVega (x: Value) : String = | ||
"<iframe width=\"100%\" frameborder=\"0\" scrolling=\"no\" | ||
onload=\"this.style.height=this.contentWindow.document.body.scrollHeight+'px'\"; | ||
srcdoc='<html> | ||
<head><script src=\"https://cdn.jsdelivr.net/npm/[email protected]\"></script> | ||
<script src=\"https://cdn.jsdelivr.net/npm/[email protected]\"></script> | ||
<script src=\"https://cdn.jsdelivr.net/npm/[email protected]\"></script> | ||
</head> | ||
<body> | ||
<div id=\"vis\"></div> | ||
<script>vegaEmbed(\"#vis\"," <> (show x) <> ");</script> | ||
</body> | ||
</html>'> | ||
</iframe>" | ||
|
||
' ## Example: Bar Chart | ||
|
||
' Start with a well type and useful Dex record | ||
|
||
df1 = for i. {a = ["A", "B", "C", "D", "E", "F", "G", "H", "I"].i, | ||
b = [28, 55, 43, 91, 81, 53, 19, 87, 52].i} | ||
|
||
|
||
chart1 = (AsVLDescriptor (pure Bar) [("title", "Bar Graph")] | ||
[{title="a axis", encodings=pureLs X, | ||
encType=Nominal, rows=wrapCol #a df1}, | ||
{title="b axis", encodings=pureLs Y, | ||
encType=Quantitative, rows=wrapCol #b df1}] | ||
) | ||
|
||
:html showVega $ toJSON chart1 | ||
> <html output> | ||
|
||
|
||
' ## Example: Scatter | ||
|
||
' This example constructs a scatter plot with several different variables. | ||
|
||
|
||
' First we will construct a Nominal variable for a class. | ||
|
||
data Class = | ||
A | ||
B | ||
C | ||
|
||
instance Show Class | ||
show = \x . case x of | ||
A -> "Apples" | ||
B -> "Bananas" | ||
C -> "Cucumbers" | ||
|
||
instance Arbitrary Class | ||
arb = \key. [A, B, C].(arb key) | ||
|
||
instance ToJSON Class | ||
toJSON = \x. AsString $ show x | ||
|
||
' Then we will generate some random data. | ||
|
||
key : Key = newKey 1 | ||
|
||
|
||
df2 :(Fin 100) => {x1:Float & x2:Float & weight:Float & label:Class} = for i: (Fin 100). | ||
[k1, k2, k3, k4] = splitKey $ ixkey key i | ||
{x1=(arb k1), | ||
x2=arb k2, | ||
weight=arb k3, | ||
label=arb k4} | ||
|
||
' The descriptor has a mapping between the variable names and their encoding type. | ||
|
||
' We use a different mark `Point` and pass in multiple Channels for some variables. | ||
|
||
chart2 = (AsVLDescriptor (pure Point) [("title", "Scatter")] | ||
[{title="X1", encodings=pureLs X, encType=Quantitative, rows=wrapCol #x1 df2}, | ||
{title="X2", encodings=pureLs Y, encType=Quantitative, rows=wrapCol #x2 df2}, | ||
{title="Weight", encodings=pureLs Size, encType=Quantitative, rows=wrapCol #weight df2}, | ||
{title="Label", encodings=toList [pure Color, pure Tooltip], encType=Nominal, rows=wrapCol #label df2}]) | ||
|
||
|
||
:html showVega $ toJSON chart2 | ||
> <html output> | ||
|
||
|
||
' ## Example: Faceted Area plot | ||
|
||
' This example show three different random walks. In particular in demonstrates how | ||
VL can auto-facet the chart based on Nominal variables. | ||
|
||
|
||
y1 : (Fin 3) => (Fin 10) => Float = arb $ newKey 0 | ||
df3 = for i. cumSum . for j. select (y1.i.j > 0.0) (-1.0) 1.0 | ||
|
||
:t df3 | ||
> ((Fin 3) => (Fin 10) => Float32) | ||
|
||
chart3 = (AsVLDescriptor (pure Area) [("title", "Area"), ("height", "75")] | ||
[{title="density", encodings=pureLs Y, encType=Quantitative, rows=for (i,j). toJSON df3.i.j}, | ||
{title="Runs", encodings=pureLs Row, encType=Nominal, rows= for (i,_). toJSON $ ["Run 1", "Run 2", "Run 3"].i}, | ||
{title="Round", encodings=pureLs X, encType=Ordinal, rows=for (_,j). toJSON $ ordinal j}] | ||
) | ||
|
||
:html showVega $ toJSON chart3 | ||
> <html output> | ||
|
||
|
||
' ## Example: Heatmap | ||
|
||
words = ["the", "dog", "walked", "to", "the", "store"] | ||
z : (Fin 6) => (Fin 6) => Float = arb $ newKey 0 | ||
|
||
def showChart4 [ToJSON o] (opts:o) : Value = toJSON (AsVLDescriptor (pure Rect) opts | ||
[{title="match", encodings=pureLs Color, encType=Quantitative, rows=for (i,j). toJSON z.i.j}, | ||
{title="words", encodings=pureLs Tooltip, encType=Nominal, rows=for (i,j). toJSON (words.i <> " - " <> words.j)}, | ||
{title="row", encodings=pureLs X, encType=Ordinal, rows=for (i,_). toJSON (ordinal i)}, | ||
{title="col", encodings=pureLs Y, encType=Ordinal, rows=for (_,j). toJSON (ordinal j)}] | ||
) | ||
|
||
' Default heat map | ||
|
||
:html showVega $ showChart4 AsNone | ||
> <html output> | ||
|
||
' Customization through JSON options. | ||
|
||
|
||
:html showVega $ showChart4 $ mergeOpts [("title", "HeatMap"), ("height", "200"), ("width", "200")] [("config", toJSON [ | ||
("axis", [("grid", "1"), ("tickBand", "extent")]) | ||
])] | ||
> <html output> | ||
|
||
|
||
' (end) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters