-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
2 changed files
with
175 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
# coding=utf-8 | ||
# Copyright 2023 The Google Research Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""Processors for filtering volumetric images.""" | ||
|
||
from typing import Optional, Sequence | ||
|
||
from connectomics.volume import subvolume | ||
from connectomics.volume import subvolume_processor | ||
import numpy as np | ||
from scipy import ndimage | ||
|
||
|
||
SuggestedXyz = subvolume_processor.SuggestedXyz | ||
|
||
|
||
class HighPass(subvolume_processor.SubvolumeProcessor): | ||
"""Applies a high-pass filter to image data. | ||
This is useful to make structures more visible at high zoom-out level. | ||
The method implemented here was originally used by Yuelong Wu @ the Harvard | ||
Lichtman lab for low-resolution visualization of the h01 dataset. | ||
""" | ||
|
||
def process(self, subvol: subvolume.Subvolume) -> subvolume.SubvolumeOrMany: | ||
box = subvol.bbox | ||
input_ndarray = subvol.data | ||
img = input_ndarray[0, 0, ...] | ||
hp = img + ndimage.minimum_filter(255 - img, 3) | ||
return self.crop_box_and_data(box, hp[np.newaxis, np.newaxis, ...]) | ||
|
||
def context(self): | ||
return SuggestedXyz(3, 3, 0), SuggestedXyz(3, 3, 0) | ||
|
||
def subvolume_size(self): | ||
return SuggestedXyz(1024, 1024, 1) | ||
|
||
|
||
class ApplyFilter(subvolume_processor.SubvolumeProcessor): | ||
"""Applies an ndimage filter to the volume.""" | ||
|
||
def __init__( | ||
self, | ||
filter_size: int | Sequence[int], | ||
filter_type: str, | ||
mode: str, | ||
dtype: Optional[str] = None, | ||
): | ||
"""Constructor. | ||
Args: | ||
filter_size: size of the filter kernel in pixels (int or [z]yx tuple) | ||
filter_type: one of: median, max, min, uniform | ||
mode: '2d' (filter will be applied to XY sections) or '3d' | ||
dtype: dtype for computation and output data; defaults to same as input; | ||
if specified, input data will be cast to this type prior to filtering | ||
""" | ||
super().__init__() | ||
|
||
filter_map = { | ||
'median': ndimage.median_filter, | ||
'max': ndimage.maximum_filter, | ||
'min': ndimage.minimum_filter, | ||
'uniform': ndimage.uniform_filter, | ||
} | ||
self._filter_type = filter_type | ||
self._filter_fn = filter_map[filter_type] | ||
self._mode = mode | ||
if dtype is not None: | ||
self._dtype = np.dtype(dtype).type | ||
else: | ||
self._dtype = None | ||
|
||
if isinstance(filter_size, int): | ||
s = filter_size | ||
if self._mode == '2d': | ||
self._filter_size = (1, s, s) | ||
else: | ||
self._filter_size = (s, s, s) | ||
else: | ||
if self._mode == '2d': | ||
self._filter_size = (1, filter_size[0], filter_size[1]) | ||
else: | ||
self._filter_size = filter_size | ||
|
||
@property | ||
def name_parts(self): | ||
return ( | ||
self._filter_type, | ||
'filter', | ||
'_'.join(str(x) for x in self._filter_size), | ||
self._mode, | ||
) | ||
|
||
def output_type(self, input_type): | ||
if self._dtype is None: | ||
return input_type | ||
else: | ||
return self._dtype | ||
|
||
def context(self): | ||
flt = np.array(self._filter_size[::-1], dtype=int) | ||
pre, post = (flt // 2).tolist(), (flt - flt // 2).tolist() | ||
if self._mode == '2d': | ||
pre[-1] = post[-1] = 0 | ||
return pre, post | ||
|
||
def process(self, subvol: subvolume.Subvolume) -> subvolume.SubvolumeOrMany: | ||
box = subvol.bbox | ||
input_ndarray = subvol.data | ||
if input_ndarray.shape[0] != 1: | ||
raise ValueError('Only 1-channel volumes are supported.') | ||
|
||
out_dtype = self.output_type(input_ndarray.dtype) | ||
input_ndarray = input_ndarray.astype(out_dtype) | ||
out = np.zeros_like(input_ndarray) | ||
out[0, ...] = self._filter_fn(input_ndarray[0, ...], self._filter_size) | ||
return self.crop_box_and_data(box, out) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
# coding=utf-8 | ||
# Copyright 2023 The Google Research Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""Tests for the filters module.""" | ||
|
||
from absl.testing import absltest | ||
from connectomics.volume.processor import filters | ||
|
||
import numpy as np | ||
|
||
|
||
class ApplyFilterTest(absltest.TestCase): | ||
|
||
def test_context(self): | ||
processor = filters.ApplyFilter( | ||
(33, 44), 'max', '2d' | ||
) | ||
pre, post = processor.context() | ||
|
||
np.testing.assert_array_equal(pre, [22, 16, 0]) | ||
np.testing.assert_array_equal(post, [22, 17, 0]) | ||
|
||
processor = filters.ApplyFilter( | ||
(1, 33, 44), 'max', '3d' | ||
) | ||
pre, post = processor.context() | ||
|
||
np.testing.assert_array_equal(pre, [22, 16, 0]) | ||
np.testing.assert_array_equal(post, [22, 17, 1]) | ||
|
||
|
||
|
||
if __name__ == "__main__": | ||
absltest.main() |