TrajNet++ is an open source framework for training trajectory forecasting models.
The TrajNet++ Model Zoo is a collection of pre-trained, state-of-the-art models for the TrajNet++ challenge. Accompanying each model is the description of model training and the command to train the model.
This collection of models can be directly trained using the TrajNet++ repository.
Interaction Class | Reference | Command | Description |
---|---|---|---|
Occupancy LSTM | Alahi et al. | sh scripts/interaction/occupancy.sh |
Occupancy Grid |
Social LSTM | Alahi et al. | sh scripts/interaction/social.sh |
Social Grid |
Directional LSTM | Kothari et al. | sh scripts/interaction/directional.sh |
Directional Grid |
This collection of models can be trained using modifications of other open-source model repositories to TrajNet++ format.
Model | Reference | Command | Repository |
---|---|---|---|
Trajectory Transformer | Giuliari et al. | ./trajnet_scripts/trajnet_run.sh |
repository link |
STGAT | Huang et al. | ./trajnet_scripts/trajnet_run.sh |
repository link |
Social-STGCNN | Mohamed et al. | ./trajnet_scripts/trajnet_run.sh |
repository link |
CausalHTP | Chen et al. | ./trajnet_scripts/trajnet_run.sh |
repository link |
SocialWays | Amirian et al. | ./trajnet_scripts/trajnet_run.sh |
repository link |
SR-LSTM | Zhang et al. | ./trajnet_scripts/trajnet_run.sh |
repository link |
DAG-Net | Monti et al. | ./trajnet_scripts/trajnet_run.sh |
repository link |
The folowing numbers are obtained using the officially released hyperparameters in the respective repositories. We are still in the process of tuning hyperparameters to optimize performance on TrajNet++
Model | ADE/FDE | Top-3 ADE/FDE | Collisions | AIcrowd submission |
---|---|---|---|---|
Trajectory Transformer | 1.22/2.57 | 0.70/1.45 | 13.86 | submission link |
STGAT | 0.88/1.85 | 0.65/1.35 | 11.28 | submission link |
Social-STGCNN | 0.80/1.52 | 0.61/1.18 | 16.78 | submission link |
CausalHTP | 0.85/1.78 | 0.65/1.35 | 10.87 | submission link |
SocialWays* | 2.57/4.69 | 2.56/4.67 | 0.57 | submission link |
SR-LSTM | 0.80/1.58 | 0.80/1.58 | 10.84 | submission link |
DAG-Net | 0.66/1.44 | 0.56/1.22 | 9.22 | submission link |
* - unreliable official implementation, yields unreliable evaluation results
If you find this code useful in your research then please cite
@article{Kothari2020HumanTF,
author={Kothari, Parth and Kreiss, Sven and Alahi, Alexandre},
journal={IEEE Transactions on Intelligent Transportation Systems},
title={Human Trajectory Forecasting in Crowds: A Deep Learning Perspective},
year={2021},
volume={},
number={},
pages={1-15},
doi={10.1109/TITS.2021.3069362}
}