Skip to content

gist-ailab/AIHub_LAVT-RIS

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

47 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AIHub LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

Welcome to the official repository for the method presented in "LAVT: Language-Aware Vision Transformer for Referring Image Segmentation."

Train with AIHub Data

제조환경 데이터 학습 코드

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345 train.py --model lavt_one_xlm --dataset aihub_manufact_80 --model_id refcoco_manufact_80_uniq_id --batch-size 4 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/refcoco_manufact_80_uniq_id/output

Test with AIHub Data

제조환경 데이터 테스트 코드

python test.py --model lavt_one_xlm --swin_type base --dataset aihub_manufact_80 --split test --resume ./checkpoints/model_best_refcoco_manufact_80_uniq_id.pth --workers 4 --ddp_trained_weights --window12 --img_size 480

Citing LAVT

@inproceedings{yang2022lavt,
  title={LAVT: Language-Aware Vision Transformer for Referring Image Segmentation},
  author={Yang, Zhao and Wang, Jiaqi and Tang, Yansong and Chen, Kai and Zhao, Hengshuang and Torr, Philip HS},
  booktitle={CVPR},
  year={2022}
}

Contributing

We appreciate all contributions. It helps the project if you could

  • report issues you are facing,
  • give a 👍 on issues reported by others that are relevant to you,
  • answer issues reported by others for which you have found solutions,
  • and implement helpful new features or improve the code otherwise with pull requests.

Acknowledgements

Code in this repository is built upon several public repositories. Specifically,

Some of these repositories in turn adapt code from OpenMMLab and TorchVision. We'd like to thank the authors/organizations of these repositories for open sourcing their projects.

License

GNU GPLv3

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 63.6%
  • Jupyter Notebook 36.4%