forked from mindspore-lab/mindone
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(diffusers/models/unets): add unet1d & StableCascade (mindspore-l…
- Loading branch information
1 parent
7e2290e
commit 6271bc5
Showing
10 changed files
with
1,821 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,4 @@ | ||
from .unet_1d import UNet1DModel | ||
from .unet_2d import UNet2DModel | ||
from .unet_2d_condition import UNet2DConditionModel | ||
from .unet_stable_cascade import StableCascadeUNet |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,261 @@ | ||
# Copyright 2024 The HuggingFace Team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from dataclasses import dataclass | ||
from typing import Optional, Tuple, Union | ||
|
||
import mindspore as ms | ||
from mindspore import nn, ops | ||
|
||
from ...configuration_utils import ConfigMixin, register_to_config | ||
from ...utils import BaseOutput | ||
from ..embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps | ||
from ..modeling_utils import ModelMixin | ||
from .unet_1d_blocks import get_down_block, get_mid_block, get_out_block, get_up_block | ||
|
||
|
||
@dataclass | ||
class UNet1DOutput(BaseOutput): | ||
""" | ||
The output of [`UNet1DModel`]. | ||
Args: | ||
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, sample_size)`): | ||
The hidden states output from the last layer of the model. | ||
""" | ||
|
||
sample: ms.Tensor | ||
|
||
|
||
class UNet1DModel(ModelMixin, ConfigMixin): | ||
r""" | ||
A 1D UNet model that takes a noisy sample and a timestep and returns a sample shaped output. | ||
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | ||
for all models (such as downloading or saving). | ||
Parameters: | ||
sample_size (`int`, *optional*): Default length of sample. Should be adaptable at runtime. | ||
in_channels (`int`, *optional*, defaults to 2): Number of channels in the input sample. | ||
out_channels (`int`, *optional*, defaults to 2): Number of channels in the output. | ||
extra_in_channels (`int`, *optional*, defaults to 0): | ||
Number of additional channels to be added to the input of the first down block. Useful for cases where the | ||
input data has more channels than what the model was initially designed for. | ||
time_embedding_type (`str`, *optional*, defaults to `"fourier"`): Type of time embedding to use. | ||
freq_shift (`float`, *optional*, defaults to 0.0): Frequency shift for Fourier time embedding. | ||
flip_sin_to_cos (`bool`, *optional*, defaults to `False`): | ||
Whether to flip sin to cos for Fourier time embedding. | ||
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D")`): | ||
Tuple of downsample block types. | ||
up_block_types (`Tuple[str]`, *optional*, defaults to `("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip")`): | ||
Tuple of upsample block types. | ||
block_out_channels (`Tuple[int]`, *optional*, defaults to `(32, 32, 64)`): | ||
Tuple of block output channels. | ||
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock1D"`): Block type for middle of UNet. | ||
out_block_type (`str`, *optional*, defaults to `None`): Optional output processing block of UNet. | ||
act_fn (`str`, *optional*, defaults to `None`): Optional activation function in UNet blocks. | ||
norm_num_groups (`int`, *optional*, defaults to 8): The number of groups for normalization. | ||
layers_per_block (`int`, *optional*, defaults to 1): The number of layers per block. | ||
downsample_each_block (`int`, *optional*, defaults to `False`): | ||
Experimental feature for using a UNet without upsampling. | ||
""" | ||
|
||
@register_to_config | ||
def __init__( | ||
self, | ||
sample_size: int = 65536, | ||
sample_rate: Optional[int] = None, | ||
in_channels: int = 2, | ||
out_channels: int = 2, | ||
extra_in_channels: int = 0, | ||
time_embedding_type: str = "fourier", | ||
flip_sin_to_cos: bool = True, | ||
use_timestep_embedding: bool = False, | ||
freq_shift: float = 0.0, | ||
down_block_types: Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"), | ||
up_block_types: Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"), | ||
mid_block_type: Tuple[str] = "UNetMidBlock1D", | ||
out_block_type: str = None, | ||
block_out_channels: Tuple[int] = (32, 32, 64), | ||
act_fn: str = None, | ||
norm_num_groups: int = 8, | ||
layers_per_block: int = 1, | ||
downsample_each_block: bool = False, | ||
): | ||
super().__init__() | ||
self.sample_size = sample_size | ||
|
||
# time | ||
if time_embedding_type == "fourier": | ||
self.time_proj = GaussianFourierProjection( | ||
embedding_size=8, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos | ||
) | ||
timestep_input_dim = 2 * block_out_channels[0] | ||
elif time_embedding_type == "positional": | ||
self.time_proj = Timesteps( | ||
block_out_channels[0], flip_sin_to_cos=flip_sin_to_cos, downscale_freq_shift=freq_shift | ||
) | ||
timestep_input_dim = block_out_channels[0] | ||
|
||
if use_timestep_embedding: | ||
time_embed_dim = block_out_channels[0] * 4 | ||
self.time_mlp = TimestepEmbedding( | ||
in_channels=timestep_input_dim, | ||
time_embed_dim=time_embed_dim, | ||
act_fn=act_fn, | ||
out_dim=block_out_channels[0], | ||
) | ||
|
||
# down | ||
down_blocks = [] | ||
output_channel = in_channels | ||
for i, down_block_type in enumerate(down_block_types): | ||
input_channel = output_channel | ||
output_channel = block_out_channels[i] | ||
|
||
if i == 0: | ||
input_channel += extra_in_channels | ||
|
||
is_final_block = i == len(block_out_channels) - 1 | ||
|
||
down_block = get_down_block( | ||
down_block_type, | ||
num_layers=layers_per_block, | ||
in_channels=input_channel, | ||
out_channels=output_channel, | ||
temb_channels=block_out_channels[0], | ||
add_downsample=not is_final_block or downsample_each_block, | ||
) | ||
down_blocks.append(down_block) | ||
self.down_blocks = nn.CellList(down_blocks) | ||
|
||
# mid | ||
self.mid_block = get_mid_block( | ||
mid_block_type, | ||
in_channels=block_out_channels[-1], | ||
mid_channels=block_out_channels[-1], | ||
out_channels=block_out_channels[-1], | ||
embed_dim=block_out_channels[0], | ||
num_layers=layers_per_block, | ||
add_downsample=downsample_each_block, | ||
) | ||
|
||
# up | ||
up_blocks = [] | ||
reversed_block_out_channels = list(reversed(block_out_channels)) | ||
output_channel = reversed_block_out_channels[0] | ||
if out_block_type is None: | ||
final_upsample_channels = out_channels | ||
else: | ||
final_upsample_channels = block_out_channels[0] | ||
|
||
for i, up_block_type in enumerate(up_block_types): | ||
prev_output_channel = output_channel | ||
output_channel = ( | ||
reversed_block_out_channels[i + 1] if i < len(up_block_types) - 1 else final_upsample_channels | ||
) | ||
|
||
is_final_block = i == len(block_out_channels) - 1 | ||
|
||
up_block = get_up_block( | ||
up_block_type, | ||
num_layers=layers_per_block, | ||
in_channels=prev_output_channel, | ||
out_channels=output_channel, | ||
temb_channels=block_out_channels[0], | ||
add_upsample=not is_final_block, | ||
) | ||
up_blocks.append(up_block) | ||
prev_output_channel = output_channel | ||
self.up_blocks = nn.CellList(up_blocks) | ||
|
||
# out | ||
num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32) | ||
self.out_block = get_out_block( | ||
out_block_type=out_block_type, | ||
num_groups_out=num_groups_out, | ||
embed_dim=block_out_channels[0], | ||
out_channels=out_channels, | ||
act_fn=act_fn, | ||
fc_dim=block_out_channels[-1] // 4, | ||
) | ||
|
||
self.use_timestep_embedding = self.config.use_timestep_embedding | ||
|
||
def construct( | ||
self, | ||
sample: ms.Tensor, | ||
timestep: Union[ms.Tensor, float, int], | ||
return_dict: bool = False, | ||
) -> Union[UNet1DOutput, Tuple]: | ||
r""" | ||
The [`UNet1DModel`] forward method. | ||
Args: | ||
sample (`ms.Tensor`): | ||
The noisy input tensor with the following shape `(batch_size, num_channels, sample_size)`. | ||
timestep (`ms.Tensor` or `float` or `int`): The number of timesteps to denoise an input. | ||
return_dict (`bool`, *optional*, defaults to `False`): | ||
Whether or not to return a [`~models.unet_1d.UNet1DOutput`] instead of a plain tuple. | ||
Returns: | ||
[`~models.unet_1d.UNet1DOutput`] or `tuple`: | ||
If `return_dict` is True, an [`~models.unet_1d.UNet1DOutput`] is returned, otherwise a `tuple` is | ||
returned where the first element is the sample tensor. | ||
""" | ||
|
||
# 1. time | ||
timesteps = timestep | ||
if not ops.is_tensor(timesteps): | ||
timesteps = ms.tensor([timesteps], dtype=ms.int64) | ||
elif ops.is_tensor(timesteps) and len(timesteps.shape) == 0: | ||
timesteps = timesteps[None] | ||
|
||
timestep_embed = self.time_proj(timesteps) | ||
|
||
# timesteps does not contain any weights and will always return f32 tensors | ||
# but time_embedding might actually be running in fp16. so we need to cast here. | ||
# there might be better ways to encapsulate this. | ||
timestep_embed = timestep_embed.to(dtype=self.dtype) | ||
if self.use_timestep_embedding: | ||
timestep_embed = self.time_mlp(timestep_embed) | ||
else: | ||
timestep_embed = timestep_embed[..., None] | ||
timestep_embed = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) | ||
timestep_embed = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) | ||
|
||
# 2. down | ||
down_block_res_samples = () | ||
for downsample_block in self.down_blocks: | ||
sample, res_samples = downsample_block(hidden_states=sample, temb=timestep_embed) | ||
down_block_res_samples += res_samples | ||
|
||
# 3. mid | ||
if self.mid_block: | ||
sample = self.mid_block(sample, timestep_embed) | ||
|
||
# 4. up | ||
for i, upsample_block in enumerate(self.up_blocks): | ||
res_samples = down_block_res_samples[-1:] | ||
down_block_res_samples = down_block_res_samples[:-1] | ||
sample = upsample_block(sample, res_hidden_states_tuple=res_samples, temb=timestep_embed) | ||
|
||
# 5. post-process | ||
if self.out_block: | ||
sample = self.out_block(sample, timestep_embed) | ||
|
||
if not return_dict: | ||
return (sample,) | ||
|
||
return UNet1DOutput(sample=sample) |
Oops, something went wrong.