Skip to content

Commit

Permalink
build based on 2f975b6
Browse files Browse the repository at this point in the history
  • Loading branch information
Documenter.jl committed Feb 24, 2024
1 parent b7a17b0 commit 18c75f1
Show file tree
Hide file tree
Showing 13 changed files with 116 additions and 115 deletions.
2 changes: 1 addition & 1 deletion dev/.documenter-siteinfo.json
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"documenter":{"julia_version":"1.10.1","generation_timestamp":"2024-02-22T18:34:43","documenter_version":"1.2.1"}}
{"documenter":{"julia_version":"1.10.1","generation_timestamp":"2024-02-24T20:16:38","documenter_version":"1.2.1"}}
2 changes: 1 addition & 1 deletion dev/alternatives/index.html

Large diffs are not rendered by default.

49 changes: 25 additions & 24 deletions dev/api/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion dev/debugging/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion dev/examples/autodiff/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -76,4 +76,4 @@
Enzyme.Duplicated(obs_seq, ∇obs_enzyme),
Enzyme.Duplicated(control_seq, ∇control_enzyme),
Enzyme.Const(seq_ends),
)</code></pre><pre class="documenter-example-output"><code class="nohighlight hljs ansi">((nothing, nothing, nothing, nothing),)</code></pre><p>Once again we can check the results.</p><pre><code class="language-julia hljs">∇parameters_enzyme ≈ ∇parameters_forwarddiff</code></pre><pre class="documenter-example-output"><code class="nohighlight hljs ansi">true</code></pre><pre><code class="language-julia hljs">∇obs_enzyme ≈ ∇obs_forwarddiff</code></pre><pre class="documenter-example-output"><code class="nohighlight hljs ansi">true</code></pre><pre><code class="language-julia hljs">∇control_enzyme ≈ ∇control_forwarddiff</code></pre><pre class="documenter-example-output"><code class="nohighlight hljs ansi">true</code></pre><p>For increased efficiency, we could provide temporary storage to Enzyme.jl in order to avoid allocations. This requires going one level deeper and leveraging the in-place <a href="../../api/#HiddenMarkovModels.forward!"><code>HiddenMarkovModels.forward!</code></a> function.</p><h2 id="Gradient-methods"><a class="docs-heading-anchor" href="#Gradient-methods">Gradient methods</a><a id="Gradient-methods-1"></a><a class="docs-heading-anchor-permalink" href="#Gradient-methods" title="Permalink"></a></h2><p>Once we have gradients of the loglikelihood, it is a natural idea to perform gradient descent in order to fit the parameters of a custom HMM. However, there are two caveats we must keep in mind.</p><p>First, computing a gradient essentially requires running the forward-backward algorithm, which means it is expensive. Given the output of forward-backward, if there is a way to perform a more accurate parameter update (like going straight to the maximum likelihood value), it is probably worth it. That is what we show in the other tutorials with the reimplementation of the <code>fit!</code> method.</p><p>Second, HMM parameters live in a constrained space, which calls for a projected gradient descent. Most notably, the transition matrix must be stochastic, and the orthogonal projection onto this set (the Birkhoff polytope) is not easy to obtain.</p><p>Still, first order optimization can be relevant when we lack explicit formulas for maximum likelihood.</p><hr/><p><em>This page was generated using <a href="https://github.com/fredrikekre/Literate.jl">Literate.jl</a>.</em></p></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../controlled/">« Control dependency</a><a class="docs-footer-nextpage" href="../../api/">API reference »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="auto">Automatic (OS)</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.2.1 on <span class="colophon-date" title="Thursday 22 February 2024 18:34">Thursday 22 February 2024</span>. Using Julia version 1.10.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
)</code></pre><pre class="documenter-example-output"><code class="nohighlight hljs ansi">((nothing, nothing, nothing, nothing),)</code></pre><p>Once again we can check the results.</p><pre><code class="language-julia hljs">∇parameters_enzyme ≈ ∇parameters_forwarddiff</code></pre><pre class="documenter-example-output"><code class="nohighlight hljs ansi">true</code></pre><pre><code class="language-julia hljs">∇obs_enzyme ≈ ∇obs_forwarddiff</code></pre><pre class="documenter-example-output"><code class="nohighlight hljs ansi">true</code></pre><pre><code class="language-julia hljs">∇control_enzyme ≈ ∇control_forwarddiff</code></pre><pre class="documenter-example-output"><code class="nohighlight hljs ansi">true</code></pre><p>For increased efficiency, we could provide temporary storage to Enzyme.jl in order to avoid allocations. This requires going one level deeper and leveraging the in-place <a href="../../api/#HiddenMarkovModels.forward!"><code>HiddenMarkovModels.forward!</code></a> function.</p><h2 id="Gradient-methods"><a class="docs-heading-anchor" href="#Gradient-methods">Gradient methods</a><a id="Gradient-methods-1"></a><a class="docs-heading-anchor-permalink" href="#Gradient-methods" title="Permalink"></a></h2><p>Once we have gradients of the loglikelihood, it is a natural idea to perform gradient descent in order to fit the parameters of a custom HMM. However, there are two caveats we must keep in mind.</p><p>First, computing a gradient essentially requires running the forward-backward algorithm, which means it is expensive. Given the output of forward-backward, if there is a way to perform a more accurate parameter update (like going straight to the maximum likelihood value), it is probably worth it. That is what we show in the other tutorials with the reimplementation of the <code>fit!</code> method.</p><p>Second, HMM parameters live in a constrained space, which calls for a projected gradient descent. Most notably, the transition matrix must be stochastic, and the orthogonal projection onto this set (the Birkhoff polytope) is not easy to obtain.</p><p>Still, first order optimization can be relevant when we lack explicit formulas for maximum likelihood.</p><hr/><p><em>This page was generated using <a href="https://github.com/fredrikekre/Literate.jl">Literate.jl</a>.</em></p></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../controlled/">« Control dependency</a><a class="docs-footer-nextpage" href="../../api/">API reference »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="auto">Automatic (OS)</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.2.1 on <span class="colophon-date" title="Saturday 24 February 2024 20:16">Saturday 24 February 2024</span>. Using Julia version 1.10.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
Loading

0 comments on commit 18c75f1

Please sign in to comment.