Skip to content

Commit

Permalink
Merge pull request #15 from gardner-lab/Liberti
Browse files Browse the repository at this point in the history
Liberti
  • Loading branch information
WALIII authored Feb 11, 2019
2 parents 366f640 + 2a28971 commit 605155d
Show file tree
Hide file tree
Showing 13 changed files with 23,812 additions and 1,518 deletions.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
11 changes: 8 additions & 3 deletions Analysis Pipeline/FS_AV_Parse.m
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ function FS_AV_Parse(DIR,varargin)
clear k V1;

else

disp('moving file- to large for batch processing... use FS_AV_Parse(pwd,large)');
%LargeDir = strcat(path,'/','LargeFiles');
movefile(FILE, error_dir)
Expand All @@ -103,6 +103,7 @@ function FS_AV_Parse(DIR,varargin)
end

%
try
disp('Performing Gain correction')
noise = squeeze(est(:,:,3,:)); % blue channel
noise = (((squeeze(mean(mean(noise(:,1:80,:),1))))));%+(squeeze(mean(mean(noise(1:10,:,:),2)))))/2);
Expand All @@ -116,6 +117,10 @@ function FS_AV_Parse(DIR,varargin)
end
clear noise;
clear est;
catch
video.gain = [];
end



% Format AUDIO DATA
Expand All @@ -134,8 +139,8 @@ function FS_AV_Parse(DIR,varargin)

try
[s,f,t]=fb_pretty_sonogram(filtfilt(b,a,mic_data./abs(max(mic_data))),fs,'low',2.5,'zeropad',0);


minpt=1;
maxpt=min(find(f>=10e3));

Expand Down
2,756 changes: 1,245 additions & 1,511 deletions FinchScope/DesignFiles/CaBMI_miniscope/CaBMI_miniscope.stl

Large diffs are not rendered by default.

22,332 changes: 22,332 additions & 0 deletions FinchScope/DesignFiles/CaBMI_miniscope/CaBMI_miniscope_18000um.stl

Large diffs are not rendered by default.

Binary file modified FinchScope/DesignFiles/CaBMI_miniscope/CaBMI_miniscope~.skp
Binary file not shown.
Binary file not shown.
1 change: 0 additions & 1 deletion FinchScope/DesignFiles/FinchScope_DualColor/placeholder

This file was deleted.

1 change: 0 additions & 1 deletion FinchScope/DesignFiles/FinchScope_WideField/placeholder

This file was deleted.

3 changes: 1 addition & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
## Overview
The FinchScope project aims to provide a modular in-vivo optophysiology rig, with a transparent acquisition and analysis pipeline. The goal is to produce a customizable and scaleable single-photon fluorescent imaging microscope system that takes advantage of developing open-source analysis platforms. You can read more about the project [here.](http://iopscience.iop.org/1741-2552/14/4/045001/)

The project was developed by [Will Liberti](https://github.com/WALIII) in the [Gardner Lab](http://people.bu.edu/timothyg/Home.html), for multi-month imaging of neural activity in songbirds [[1]](https://doi.org/10.1371/journal.pbio.1002158) [[2]](https://www.nature.com/articles/nn.4405) [[3]](https://ccneuro.org/2018/proceedings/1133.pdf) and rodents. This effort would not have been possible without the critical advice and support at the outset of the project by Daniel Aharoni and Peyman Golshani, of the [UCLA Miniscope project](http://miniscope.org/index.php?title=Main_Page)
The project was developed by [Will Liberti](https://github.com/WALIII) in the [Gardner Lab](http://people.bu.edu/timothyg/Home.html), for multi-month imaging of neural activity in songbirds [[1]](https://doi.org/10.1371/journal.pbio.1002158) [[2]](https://www.nature.com/articles/nn.4405) [[3]](https://ccneuro.org/2018/proceedings/1133.pdf) and rodents. This effort would not have been possible without the critical advice and support at the outset of the project by Daniel Aharoni and Peyman Golshani, of the [UCLA Miniscope project](http://miniscope.org/index.php?title=Main_Page)



Expand Down Expand Up @@ -43,4 +43,3 @@ If you use any part of this project in your work, please cite out Journal of Neu
* [Nathan Perkins]([email protected])
* [Daniel Leman]([email protected])
* [Ian Davison]([email protected])

226 changes: 226 additions & 0 deletions fdr_bh.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,226 @@
% fdr_bh() - Executes the Benjamini & Hochberg (1995) and the Benjamini &
% Yekutieli (2001) procedure for controlling the false discovery
% rate (FDR) of a family of hypothesis tests. FDR is the expected
% proportion of rejected hypotheses that are mistakenly rejected
% (i.e., the null hypothesis is actually true for those tests).
% FDR is a somewhat less conservative/more powerful method for
% correcting for multiple comparisons than procedures like Bonferroni
% correction that provide strong control of the family-wise
% error rate (i.e., the probability that one or more null
% hypotheses are mistakenly rejected).
%
% This function also returns the false coverage-statement rate
% (FCR)-adjusted selected confidence interval coverage (i.e.,
% the coverage needed to construct multiple comparison corrected
% confidence intervals that correspond to the FDR-adjusted p-values).
%
%
% Usage:
% >> [h, crit_p, adj_ci_cvrg, adj_p]=fdr_bh(pvals,q,method,report);
%
% Required Input:
% pvals - A vector or matrix (two dimensions or more) containing the
% p-value of each individual test in a family of tests.
%
% Optional Inputs:
% q - The desired false discovery rate. {default: 0.05}
% method - ['pdep' or 'dep'] If 'pdep,' the original Bejnamini & Hochberg
% FDR procedure is used, which is guaranteed to be accurate if
% the individual tests are independent or positively dependent
% (e.g., Gaussian variables that are positively correlated or
% independent). If 'dep,' the FDR procedure
% described in Benjamini & Yekutieli (2001) that is guaranteed
% to be accurate for any test dependency structure (e.g.,
% Gaussian variables with any covariance matrix) is used. 'dep'
% is always appropriate to use but is less powerful than 'pdep.'
% {default: 'pdep'}
% report - ['yes' or 'no'] If 'yes', a brief summary of FDR results are
% output to the MATLAB command line {default: 'no'}
%
%
% Outputs:
% h - A binary vector or matrix of the same size as the input "pvals."
% If the ith element of h is 1, then the test that produced the
% ith p-value in pvals is significant (i.e., the null hypothesis
% of the test is rejected).
% crit_p - All uncorrected p-values less than or equal to crit_p are
% significant (i.e., their null hypotheses are rejected). If
% no p-values are significant, crit_p=0.
% adj_ci_cvrg - The FCR-adjusted BH- or BY-selected
% confidence interval coverage. For any p-values that
% are significant after FDR adjustment, this gives you the
% proportion of coverage (e.g., 0.99) you should use when generating
% confidence intervals for those parameters. In other words,
% this allows you to correct your confidence intervals for
% multiple comparisons. You can NOT obtain confidence intervals
% for non-significant p-values. The adjusted confidence intervals
% guarantee that the expected FCR is less than or equal to q
% if using the appropriate FDR control algorithm for the
% dependency structure of your data (Benjamini & Yekutieli, 2005).
% FCR (i.e., false coverage-statement rate) is the proportion
% of confidence intervals you construct
% that miss the true value of the parameter. adj_ci=NaN if no
% p-values are significant after adjustment.
% adj_p - All adjusted p-values less than or equal to q are significant
% (i.e., their null hypotheses are rejected). Note, adjusted
% p-values can be greater than 1.
%
%
% References:
% Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery
% rate: A practical and powerful approach to multiple testing. Journal
% of the Royal Statistical Society, Series B (Methodological). 57(1),
% 289-300.
%
% Benjamini, Y. & Yekutieli, D. (2001) The control of the false discovery
% rate in multiple testing under dependency. The Annals of Statistics.
% 29(4), 1165-1188.
%
% Benjamini, Y., & Yekutieli, D. (2005). False discovery rate?adjusted
% multiple confidence intervals for selected parameters. Journal of the
% American Statistical Association, 100(469), 71?81. doi:10.1198/016214504000001907
%
%
% Example:
% nullVars=randn(12,15);
% [~, p_null]=ttest(nullVars); %15 tests where the null hypothesis
% %is true
% effectVars=randn(12,5)+1;
% [~, p_effect]=ttest(effectVars); %5 tests where the null
% %hypothesis is false
% [h, crit_p, adj_ci_cvrg, adj_p]=fdr_bh([p_null p_effect],.05,'pdep','yes');
% data=[nullVars effectVars];
% fcr_adj_cis=NaN*zeros(2,20); %initialize confidence interval bounds to NaN
% if ~isnan(adj_ci_cvrg),
% sigIds=find(h);
% fcr_adj_cis(:,sigIds)=tCIs(data(:,sigIds),adj_ci_cvrg); % tCIs.m is available on the
% %Mathworks File Exchagne
% end
%
%
% For a review of false discovery rate control and other contemporary
% techniques for correcting for multiple comparisons see:
%
% Groppe, D.M., Urbach, T.P., & Kutas, M. (2011) Mass univariate analysis
% of event-related brain potentials/fields I: A critical tutorial review.
% Psychophysiology, 48(12) pp. 1711-1725, DOI: 10.1111/j.1469-8986.2011.01273.x
% http://www.cogsci.ucsd.edu/~dgroppe/PUBLICATIONS/mass_uni_preprint1.pdf
%
%
% For a review of FCR-adjusted confidence intervals (CIs) and other techniques
% for adjusting CIs for multiple comparisons see:
%
% Groppe, D.M. (in press) Combating the scientific decline effect with
% confidence (intervals). Psychophysiology.
% http://biorxiv.org/content/biorxiv/early/2015/12/10/034074.full.pdf
%
%
% Author:
% David M. Groppe
% Kutaslab
% Dept. of Cognitive Science
% University of California, San Diego
% March 24, 2010

%%%%%%%%%%%%%%%% REVISION LOG %%%%%%%%%%%%%%%%%
%
% 5/7/2010-Added FDR adjusted p-values
% 5/14/2013- D.H.J. Poot, Erasmus MC, improved run-time complexity
% 10/2015- Now returns FCR adjusted confidence intervals

function [h, crit_p, adj_ci_cvrg, adj_p]=fdr_bh(pvals,q,method,report)

if nargin<1,
error('You need to provide a vector or matrix of p-values.');
else
if ~isempty(find(pvals<0,1)),
error('Some p-values are less than 0.');
elseif ~isempty(find(pvals>1,1)),
error('Some p-values are greater than 1.');
end
end

if nargin<2,
q=.05;
end

if nargin<3,
method='pdep';
end

if nargin<4,
report='no';
end

s=size(pvals);
if (length(s)>2) || s(1)>1,
[p_sorted, sort_ids]=sort(reshape(pvals,1,prod(s)));
else
%p-values are already a row vector
[p_sorted, sort_ids]=sort(pvals);
end
[dummy, unsort_ids]=sort(sort_ids); %indexes to return p_sorted to pvals order
m=length(p_sorted); %number of tests

if strcmpi(method,'pdep'),
%BH procedure for independence or positive dependence
thresh=(1:m)*q/m;
wtd_p=m*p_sorted./(1:m);

elseif strcmpi(method,'dep')
%BH procedure for any dependency structure
denom=m*sum(1./(1:m));
thresh=(1:m)*q/denom;
wtd_p=denom*p_sorted./[1:m];
%Note, it can produce adjusted p-values greater than 1!
%compute adjusted p-values
else
error('Argument ''method'' needs to be ''pdep'' or ''dep''.');
end

if nargout>3,
%compute adjusted p-values; This can be a bit computationally intensive
adj_p=zeros(1,m)*NaN;
[wtd_p_sorted, wtd_p_sindex] = sort( wtd_p );
nextfill = 1;
for k = 1 : m
if wtd_p_sindex(k)>=nextfill
adj_p(nextfill:wtd_p_sindex(k)) = wtd_p_sorted(k);
nextfill = wtd_p_sindex(k)+1;
if nextfill>m
break;
end;
end;
end;
adj_p=reshape(adj_p(unsort_ids),s);
end

rej=p_sorted<=thresh;
max_id=find(rej,1,'last'); %find greatest significant pvalue
if isempty(max_id),
crit_p=0;
h=pvals*0;
adj_ci_cvrg=NaN;
else
crit_p=p_sorted(max_id);
h=pvals<=crit_p;
adj_ci_cvrg=1-thresh(max_id);
end

if strcmpi(report,'yes'),
n_sig=sum(p_sorted<=crit_p);
if n_sig==1,
fprintf('Out of %d tests, %d is significant using a false discovery rate of %f.\n',m,n_sig,q);
else
fprintf('Out of %d tests, %d are significant using a false discovery rate of %f.\n',m,n_sig,q);
end
if strcmpi(method,'pdep'),
fprintf('FDR/FCR procedure used is guaranteed valid for independent or positively dependent tests.\n');
else
fprintf('FDR/FCR procedure used is guaranteed valid for independent or dependent tests.\n');
end
end




0 comments on commit 605155d

Please sign in to comment.