Skip to content

Powerful schema-based validation of Python dicts

License

Notifications You must be signed in to change notification settings

gamechanger/schemer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Schemer

Powerful schema-based validation of Python dicts.

build status Github License

Installation

Install via easy_install:

easy_install schemer

Or, via pip:

pip install schemer

Getting Started

Schemer allows you to declaratively express the desired structure and contraints of a Python dict in a reusable Schema which itself is declared as a Python dict.

Schemas can then be used to validate specific dict instances and apply default values to them where appropriate.

Schemas can be easily nested within one another providing powerful composability of document structures.

Though Schemer was originally designed to validate Mongo documents and was extracted from Mongothon, it is now completely agnostic of use case.

Example

This is how simple it is to declare a Schema:

car_schema = Schema({
    "make":         {"type": basestring, "required": True},
    "model":        {"type": basestring, "required": True},
    "num_wheels":   {"type": int,        "default": 4, "validates": gte(0)}
    "color":        {"type": basestring, "validates": one_of("red", "green", "blue")}
})

Once you have your schema you can use it to validate a dict:

car = {
    "make":         "Ford",
    "model":        "F-150",
    "num_wheels":   -1
    "color":        "red"
}

try:
    car_schema.validate(car)
except ValidationException:
    # num_wheels should be >= 0

API Reference

Schemas

Types

Each field in a schema must be given a type by adding a "type" key to the field spec dict. For example, this schema declares a single "name" field with a type of basestring:

schema = Schema({"name": {"type": basestring}})

The "type" can be any Python type which responds to isinstance(), another Schema for schema-nesting (see below), or a function which will create dynamic schema (see below).

The "Mixed" type

The Mixed type allows you to indicate that a field supports values of multiple types.

schema = Schema({"external_id": {"type": Mixed(basestring, int)}})  # only basestring, int and ObjectId are supported

When you validate a dict containing a value of the wrong type for a given a field a ValidationException will be thrown describing the error.

Required and nullable fields

You can require a field to be both present in a dict and to have a non-None value by adding "required": True to the field's spec in the Schema:

schema = Schema({"name": {"type": basestring, "required": True}})

schema.validate({"name": "bob"})  # valid
schema.validate({"name": None})   # invalid, throws ValidationException
schema.validate({})               # invalid, throws ValidationException

Fields are "required": False by default.

You can also mark a required field as nullable by adding "nullable": True to the field's spec. This means that although we still require the field's key to be present in the dict we're validating, its value may be set to None.

schema = Schema({"name": {"type": basestring, "required": True, "nullable": True}})

schema.validate({"name": "bob"})  # valid
schema.validate({"name": None})   # valid
schema.validate({})               # invalid, throws ValidationException

Required fields are not nullable by default.

Nested schemas

Schemas may be nested within one another in order to describe the structure of dicts containing deep graphs.

Nested schemas can either be declared inline:

blog_post_schema = Schema({
    "author":   {"type": Schema({
        "first_name": {"type": basestring},
        "last_name": {"type": basestring}})},
    "title":    {"type": basestring},
    "content":  {"type": basestring}
})

or declared in isolation and then referenced (and potentially reused between multiple parent schemas):

name_schema = Schema({
    "first_name":   {"type": basestring},
    "last_name":    {"type": basestring}
})

blog_post_schema = Schema({
    "author":   {"type": name_schema},
    "title":    {"type": basestring},
    "content":  {"type": basestring}
})

comment_schema = Schema({
    "author":   {"type": name_schema, "required":True},
    "comment":  {"type": base_string}
})

In each case the nested schema is provided as the type parameter in the parent field's spec and can be declared as "required"=True if so desired. Any validation present within the nested schema is applied wherever the schema is used.

Embedded arrays

As well as nesting schemas directly under fields, Schemer supports embedding lists within dicts. To declare an embedded array, simply set the type of the field to Array providing the type of entries in the array as an init arg:

line_item_schema = Schema({
    "price":        {"type": int, "required": True}
    "item_name":    {"type": basestring, "required": True}
})

order_schema = Schema({
    "line_items":   {"type": Array(line_item_schema)}
    "total_due":    {"type": int}
})

Simple primitive types can be embedded as well as full schemas:

bookmark_schema = Schema({
    "url":      {"type": basestring},
    "tags":     {"type": Array(basestring)}
})

Just like other fields, embedded arrays can have defaults (see below):

bookmark_schema = Schema({
    "url":      {"type": basestring},
    "tags":     {"type": Array(basestring), "default": []}
})

...and validation (see below):

bookmark_schema = Schema({
    "url":      {"type": basestring},
    "tags":     {"type": Array(basestring), "validates":[each_item(length(min=1)),
                                                         distinct()]}
})

Dynamic Types

Sometimes it becomes necessary to set the expected type for a given field dynamically at validation-time, based on the content of a given document.

For this purpose, Schemer allows you to specify a function for a given field's 'type' specification. The given function will be called at validation time with a single argument - the sub-document, of the document being validated, keyed off of the field. The dynamic type function should return the type against which the given field value should be validated. This can be a simple Python type, or a Schema or Array.

Consider the following example:

uk_address_schema = Schema({
    'recipient':            {'type': basestring, 'required': True},
    'floor_apartment':      {'type': basestring, 'required': False},
    'building':             {'type': basestring, 'required': False},
    'house_number':         {'type': int,  'required': False},
    'dependent_locality':   {'type': basestring, 'required': False},
    'localitly':            {'type': basestring, 'required': True},
    'postal_code':          {'type': basestring, 'required': True},
    'country':              {'type': basestring, 'required': True}
})

usa_address_schema = Schema({
    'recipient':                    {'type': basestring, 'required': True},
    'house_number_street_name':     {'type': int,  'required': True},
    'floor_apartment':              {'type': basestring, 'required': False},
    'locality_province_postalcode': {'type': basestring, 'required': True},
    'country':                      {'type': basestring, 'required': True}
})

canada_address_schema = Schema({
    'recipient':                    {'type': basestring, 'required': True},
    'house_number_street_name':     {'type': basestring, 'required': True},
    'street_direction':             {'type': basestring, 'required': False},
    'locality_province_postalcode': {'type': basestring, 'required': True},
    'country':                      {'type': basestring, 'required': True}
})

def get_address_schema(document):
    country = document.get('country')
    if country == 'uk':
        return uk_address_schema
    elif country == 'usa':
        return usa_address_schema
    else:
        return canada_address_schema

user_account_schema = Schema({
    'first_name':   {'type': basestring, 'required': True},
    'last_name':    {'type': basestring, 'required': True},
    'age':          {'type': int, 'required': True},
    'address':      {'type': get_address_schema, 'required': True}
})

In this instance, dynamic types allow us to specify a single 'address' field on the user_account_schema, but validate against one of multiple potential address schemas depending on the country we've set in any given document's address.

Important Note: Bear in mind that using dynamic type functions in this way effectively defers the verification that the Schema's structure is itself valid until document validation time. So you're giving up a certain amount of control for the sake of flexibility.

Defaults

Schemas allow you to specify default values for fields which may be applied to a given document. A default can be specified a few different ways:

  • It can be specified as literal:
schema = Schema({"num_wheels": {"type": int, "default": 4}})
  • It can be specified as a reference to parameterless function which will be called at the point the default is applied:
import datetime
schema = Schema({"created_date": {"type": datetime, "default": datetime.utcnow}})
  • You can use defaults with Arrays and Schemas
num_wheels_schema = Schema({"num_wheels": {"type": int, "default": 4}})
schema_default = Schema("wheel_info": {"type": num_wheels_schema, "default"={}})
array_default = Schema("car_info": {"type": Array(num_wheels_schema), "default"=[{}, {}, {}]})

The default must be {} for Schemas and a list of {}s for Arrays.

Defaults can be applied to a given document by using the apply_defaults() method:

schema = Schema({"num_wheels": {"type": int, "default": 4}})
car = {}
schema.apply_defaults(car)
assert car == {"num_wheels": 4}

Using the third example above:

car = {}
schema_default.apply_defaults(car)
assert car == {"wheel_info": {"num_wheels": 4}}

cars = {}
array_default.apply_defaults(cars)
assert cars == {"wheel_info": [{"num_wheels": 4}, {"num_wheels": 4}, {"num_wheels": 4}]}

Validation

Schemer allows you to specify further validation for a field using the "validates" key in the field spec. You can specify a single validator:

schema = Schema({"color": {"type": basestring, "validates": one_of("red", "green", "blue")}})

or multiple validators:

schema = Schema({"num_wheels": {"type": int, "validates": [gte(0), lte(6)]}})

Provided validators

Schemer provides the following validators out-of-the-box:

Validator Works with type(s) Validates the field...
gte(value) Any is greater than or equal to the given value
lte(value) Any is less than or equal to the given value
gt(value) Any is greater than the given value
lt(value) Any is less than the given value
between(min_value, max_value) Any is between the given min and max values
length(min_length, [max_length]) Sequence types (str, list, etc) is at least the given min length and (optionally) at most the given max length
match(pattern) basestring, str, unicode is matches the given regex pattern
one_of(*values) basestring, str, unicode is equal to one of the given values
is_url() basestring, str, unicode is a valid URL
is_email() basestring, str, unicode is a valid email address
distinct() list contains distinct values
each_item(*validators) list by validating each contained item with the given validators.

Creating custom validators

In addition to the provided validators it's easy to create your own custom validators. To create a custom validator:

  • declare a function which accepts any arguments you want to provide to the validation algorithm
  • the function should itself return a function which will ultimately be called by Schemer when validating a field value. The function should:
    • accept a single argument - the field value being validated
    • return nothing if the given value is valid
    • return a string describing the validation error if the value is invalid

Here's the declaration of an example custom validator:

def startswith(prefix):
    def validate(value):
        if not value.startswith(prefix):
            return "String must start with %s" % prefix
    return validate

# Usage:
schema = Schema({"full_name": {"type": basestring, "validates": startswith("Mr")}})

Schema level validators

Validation can also be done at the Schema level.

def check_for_valid_dates():
    def validate(document):
        if document["initial_date"] > document["current_date"]:
            return "Initial date must be less than or equal to current date"
    return validate

schema = Schema({"initial_date": {"type": datetime},
                 "current_date": {"type": datetime}},
                validates=[check_for_valid_dates()])

Validating dicts

To validate a given dict, using all the constraints of the schema as described above, simply call validate() on the Schema passing the dict to test:

schema.validate(mydict)

If the dict is found to be valid then this call will return without issue. If the dict is found to be invalid then a ValidationException will be thrown. This exception can be inspected for details of the failures:

try:
    schema.validate(my_dict)
except ValidationException, e:
    for path, error in e.errors.iteritems():
        print "Error found for {}: {}".format(path, error)

Developing and Contributing

To run Schemer's tests, simply install nose (pip install nose) and run python setup.py nosetests at the command line.

All contributions submitted as GitHub pull requests are warmly received.

About

Powerful schema-based validation of Python dicts

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages