Skip to content

Commit

Permalink
D65489998 Optimize performance of embeddings sharding
Browse files Browse the repository at this point in the history
Summary:
Backing out "D65489998 Optimize performance of embeddings sharding"
due to dtype mismatch during Transfer Learning TransferAll

Reviewed By: gag1jain

Differential Revision: D66800554
  • Loading branch information
Peter Chu authored and facebook-github-bot committed Dec 5, 2024
1 parent 79111fb commit f82c38c
Showing 1 changed file with 5 additions and 26 deletions.
31 changes: 5 additions & 26 deletions torchrec/distributed/embeddingbag.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@
from fbgemm_gpu.permute_pooled_embedding_modules import PermutePooledEmbeddings
from torch import distributed as dist, nn, Tensor
from torch.autograd.profiler import record_function
from torch.distributed._tensor import DTensor
from torch.distributed._tensor import DTensor, Shard
from torch.nn.modules.module import _IncompatibleKeys
from torch.nn.parallel import DistributedDataParallel
from torchrec.distributed.embedding_sharding import (
Expand Down Expand Up @@ -68,7 +68,6 @@
ShardingEnv2D,
ShardingType,
ShardMetadata,
TensorProperties,
)
from torchrec.distributed.utils import (
add_params_from_parameter_sharding,
Expand Down Expand Up @@ -943,31 +942,11 @@ def _initialize_torch_state(self) -> None: # noqa
# created ShardedTensors once in init, use in post_state_dict_hook
# note: at this point kvstore backed tensors don't own valid snapshots, so no read
# access is allowed on them.
sharding_spec = none_throws(
self.module_sharding_plan[table_name].sharding_spec
)
metadata = sharding_spec.build_metadata(
tensor_sizes=self._name_to_table_size[table_name],
tensor_properties=(
TensorProperties(
dtype=local_shards[0].tensor.dtype,
layout=local_shards[0].tensor.layout,
requires_grad=local_shards[0].tensor.requires_grad,
)
if local_shards
else TensorProperties()
),
)

self._model_parallel_name_to_sharded_tensor[table_name] = (
ShardedTensor._init_from_local_shards_and_global_metadata(
local_shards=local_shards,
sharded_tensor_metadata=metadata,
process_group=(
self._env.sharding_pg
if isinstance(self._env, ShardingEnv2D)
else self._env.process_group
),
ShardedTensor._init_from_local_shards(
local_shards,
self._name_to_table_size[table_name],
process_group=self._env.process_group,
)
)

Expand Down

0 comments on commit f82c38c

Please sign in to comment.