Skip to content
/ TGBase Public

TGBase: A Strong Node Classification Baseline for Temporal Graphs

License

Notifications You must be signed in to change notification settings

fpour/TGBase

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A Strong Node Classification Baseline for Temporal Graphs

Introduction

Representation learning on temporal networks is a first step for performing further analysis, e.g. node classification. We propose TGBase that extracts key features to consider the structural characteristics of each node and its neighborhood as well as the intensity and timestamp of the interactions among node pairs.

The paper can be found here.

Experiments

Requirements

pandas==1.1.0
torch==1.10.0
scikit_learn==1.0.1
numpy==1.21.2

Datasets

Sample datasets can be downloaded from the following sources:

To user your own data, it should have similar format to the above datasets. All data are assumed to be in "data" folder.

Execution

  • Static node classification:
    • To generate TGBase embedding for OTC dataset and classify the nodes with a Random Forest classifier:
      python src/TGBase_staticEmb.py --network otc
      python src/static_n_clf.py --network otc --clf RF
      
  • Dynamic node classification:
    • To generate embeddings for wikipedia network and apply the classification with a MLP classifier:
      python src/TGBase_DynEmb.py --network wikipedia
      python src/dynamic_n_clf.py --network wikipedia --clf MLP
      

An execution summary is saved in "logs" folder.

Acknowledgment

We would like to thank TGN's authors for providing open access to the implementation of their methods.

Cite us

@inproceedings{tgbase_sdm_2022,
    title={A Strong Node Classification Baseline for Temporal Graphs},
    author={Farimah Poursafaei and Zeljko Zilic and Reihaneh Rabbany},
    booktitle={SIAM International Conference on Data Mining (SIAM SDM22)},
    year={2022}
}

About

TGBase: A Strong Node Classification Baseline for Temporal Graphs

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published