Skip to content

Commit

Permalink
Adds more flexibility in the aperiodic/oscillatory fitting
Browse files Browse the repository at this point in the history
DESCRIPTION:
I have added a keyword `ap_range` to the FOOOF.fit() function.

When `ap_range` is specified, the already existing `freq_range` keyword
is used to determine the frequencies for the oscillatory fits while the
ap_range keyword is used for the aperiodic fit. When it is not
specified, everything proceeds as before.

This allows the two parts FO and OOF to be more-or-less independent of
one another if so-desired.

Furthermore, the  `ap_range` keyword may also be a set of indices in
order to allow for a very simple implementation of exclusion zones.

TESTING:
Tested on 5 different EEG files, no errors unless inputs are the wrong
size.
  • Loading branch information
Laurent Mackay committed Aug 22, 2019
1 parent 9a7fabb commit 5109345
Showing 1 changed file with 30 additions and 14 deletions.
44 changes: 30 additions & 14 deletions fooof/fit.py
Original file line number Diff line number Diff line change
Expand Up @@ -330,14 +330,14 @@ def fit(self, freqs=None, power_spectrum=None, freq_range=None, ap_range=None):
Frequency values for the power spectrum, in linear space.
power_spectrum : 1d array, optional
Power values, which must be input in linear space.
freq_range : list of [float, float], optional
Frequency range to restrict power spectrum to. If not provided, keeps the entire range.
freq_range : list of [float, float], or np.ndarray of booleans of the same length as freqs, optional
Frequency range/indices to restrict power spectrum to. If not provided, keeps the entire range.
ap_range :
Notes
-----
Data is optional if data has been already been added to FOOOF object.
"""

# If freqs & power_spectrum provided together, add data to object.
if freqs is not None and power_spectrum is not None:
self.add_data(freqs, power_spectrum, freq_range if ap_range is None else None)
Expand All @@ -358,9 +358,15 @@ def fit(self, freqs=None, power_spectrum=None, freq_range=None, ap_range=None):
# In rare cases, the model fails to fit. Therefore it's in a try/except
# Cause of failure: RuntimeError, failure to find parameters in curve_fit
try:

if ap_range is not None:#isolate aperiodic frequencies/spectrum
if not isinstance(ap_range,np.ndarray) or ap_range.shape[-1]==2:
ap_inds = (self.freqs >= ap_range[0]) & (self.freqs <= ap_range[1])
elif ap_range.shape[-1]==self.freqs.shape[-1]:
ap_inds = ap_range
else:
raise ValueError('ap_range must have the same length as freqs - can not proceed')

if ap_range:
ap_inds = (self.freqs >= ap_range[0]) & (self.freqs <= ap_range[1])
ap_freqs = self.freqs[ap_inds]
ap_spectrum = self.power_spectrum[ap_inds]
else:
Expand All @@ -374,22 +380,27 @@ def fit(self, freqs=None, power_spectrum=None, freq_range=None, ap_range=None):
# Flatten the power_spectrum using fit aperiodic fit
self._spectrum_flat = self.power_spectrum - self._ap_fit

if ap_range:
per_inds = (self.freqs >= ap_range[0]) & (self.freqs <= ap_range[1])

if ap_range is not None:#isolate periodic frequencies/spectrum
per_inds = (self.freqs >= freq_range[0]) & (self.freqs <= freq_range[1])
per_spectrum_flat = np.copy(self._spectrum_flat[per_inds])
self._spectrum_flat = per_spectrum_flat
#save/set some attributes so peak fitting works properly
freqs_0 = self.freqs
self.freqs = self.freqs[per_inds]
per_spectrum_flat = self._spectrum_flat[per_inds]
if freq_range:
freq_range_0 = self.freq_range
self.freq_range = freq_range
else:
per_spectrum_flat = np.copy(self._spectrum_flat)



# Find peaks, and fit them with gaussians
self.gaussian_params_ = self._fit_peaks(per_spectrum_flat)
self.gaussian_params_ = self._fit_peaks(np.copy(self._spectrum_flat))

if ap_range:
self.freqs=freqs_0
if ap_range is not None:
#restore attributes to initial values
self.freqs = freqs_0
self.freq_range = freq_range_0

# Calculate the peak fit
# Note: if no peaks are found, this creates a flat (all zero) peak fit.
Expand All @@ -398,9 +409,14 @@ def fit(self, freqs=None, power_spectrum=None, freq_range=None, ap_range=None):
# Create peak-removed (but not flattened) power spectrum.
self._spectrum_peak_rm = self.power_spectrum - self._peak_fit

if ap_range is not None:
ap_spectrum_peak_rm = self._spectrum_peak_rm[ap_inds]
else:
ap_spectrum_peak_rm = self._spectrum_peak_rm

# Run final aperiodic fit on peak-removed power spectrum
# Note: This overwrites previous aperiodic fit
self.aperiodic_params_ = self._simple_ap_fit(self.freqs, self._spectrum_peak_rm)
self.aperiodic_params_ = self._simple_ap_fit(ap_freqs, ap_spectrum_peak_rm)
self._ap_fit = gen_aperiodic(self.freqs, self.aperiodic_params_)

# Create full power_spectrum model fit
Expand Down

0 comments on commit 5109345

Please sign in to comment.