-
Notifications
You must be signed in to change notification settings - Fork 234
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
178 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,178 @@ | ||
import pandas as pd | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import seaborn as sns | ||
import os | ||
|
||
# Read the CSV file | ||
def plot_fwd_overhead(filepath, num_tokens_per_batch): | ||
# Load the CSV file | ||
df = pd.read_csv(filepath) | ||
|
||
# Calculate step_time as difference between consecutive timestamps | ||
# Convert from microseconds to milliseconds (divide by 1000) | ||
df['step_time'] = df['timestamp'].diff() / 1000 | ||
|
||
# Filter rows based on the specified conditions | ||
filtered_df = df[ | ||
(df['num_decoding_tokens'] == 8) & | ||
(df['num_prefilling_tokens'] == 0) & | ||
(df['num_finetuning_fwd_tokens'] == 0) & | ||
(df['num_finetuning_bwd_tokens'] == 0) | ||
] | ||
|
||
# Calculate statistics for step_time | ||
avg_step_time = filtered_df['step_time'].mean() | ||
std_step_time = filtered_df['step_time'].std() | ||
|
||
# print(f"Analysis Results:") | ||
# print(f"Number of matching rows: {len(filtered_df)}") | ||
# print(f"Average step time: {avg_step_time:.3f} milliseconds") | ||
# print(f"Standard deviation of step time: {std_step_time:.3f} milliseconds") | ||
print(f"Step time: {avg_step_time:.3f} ± {std_step_time:.3f} ms ({len(filtered_df)} entries)") | ||
|
||
if num_tokens_per_batch ==128: | ||
values_of_interest=[1,14,27,41,54,67,80,94,107,120] | ||
elif num_tokens_per_batch == 256: | ||
values_of_interest=[1,28,56,83,111,138,166,193,221,248] | ||
elif num_tokens_per_batch == 512: | ||
values_of_interest=[1,57,113,169,225,280,336,392,448,504] | ||
|
||
# Second analysis: Variable finetuning tokens | ||
filtered_df_2 = df[ | ||
(df['is_warmup_step'] == 0) & | ||
(df['num_decoding_tokens'] == 8) & | ||
(df['num_prefilling_tokens'] == 0) & | ||
(df['num_finetuning_bwd_tokens'] == 0) & | ||
(df['num_finetuning_fwd_tokens'].isin(values_of_interest)) | ||
] | ||
filtered_df_2 = filtered_df_2[['num_finetuning_fwd_tokens', 'step_time']] | ||
# filtered_df_2 = filtered_df_2.groupby('num_finetuning_fwd_tokens').mean().reset_index() | ||
# sort by num_finetuning_fwd_tokens | ||
# filtered_df_2 = filtered_df_2.sort_values('num_finetuning_fwd_tokens') | ||
# print(filtered_df_2) | ||
# print(filtered_df_2[['num_finetuning_fwd_tokens', 'step_time']].head()) | ||
|
||
# Create scatter plot | ||
plt.figure(figsize=(10, 6)) | ||
sns.scatterplot(data=filtered_df_2, | ||
x='num_finetuning_fwd_tokens', | ||
y='step_time', | ||
alpha=0.6) | ||
|
||
plt.title('Step Time vs Number of Finetuning Forward Tokens\nMax Tokens per Batch: ' + str(num_tokens_per_batch)) | ||
plt.xlabel('Number of Finetuning Forward Tokens') | ||
plt.ylabel('Step Time (milliseconds)') | ||
|
||
# Add trend line | ||
avg_std_df = filtered_df_2.groupby('num_finetuning_fwd_tokens').agg( | ||
avg_step_time=('step_time', 'mean'), | ||
std_step_time=('step_time', 'std') | ||
).reset_index() | ||
|
||
plt.errorbar(avg_std_df['num_finetuning_fwd_tokens'], | ||
avg_std_df['avg_step_time'], | ||
yerr=avg_std_df['std_step_time'], | ||
fmt='-o', | ||
color='red', | ||
ecolor='gray', | ||
elinewidth=2, | ||
capsize=4) | ||
|
||
plt.grid(True, linestyle='--', alpha=0.7) | ||
plt.tight_layout() | ||
|
||
plt.savefig(f'./plots/fwd_overhead_{num_tokens_per_batch}.pdf', bbox_inches='tight') | ||
|
||
# plt.show() | ||
|
||
def plot_bwd_overhead(filepath, num_tokens_per_batch): | ||
# Load the CSV file | ||
df = pd.read_csv(filepath) | ||
|
||
# Calculate step_time as difference between consecutive timestamps | ||
# Convert from microseconds to milliseconds (divide by 1000) | ||
df['step_time'] = df['timestamp'].diff() / 1000 | ||
|
||
# Filter rows based on the specified conditions | ||
filtered_df = df[ | ||
(df['num_decoding_tokens'] == 8) & | ||
(df['num_prefilling_tokens'] == 0) & | ||
(df['num_finetuning_fwd_tokens'] == 0) & | ||
(df['num_finetuning_bwd_tokens'] == 0) | ||
] | ||
|
||
# Calculate statistics for step_time | ||
avg_step_time = filtered_df['step_time'].mean() | ||
std_step_time = filtered_df['step_time'].std() | ||
|
||
# print(f"Analysis Results:") | ||
# print(f"Number of matching rows: {len(filtered_df)}") | ||
# print(f"Average step time: {avg_step_time:.3f} milliseconds") | ||
# print(f"Standard deviation of step time: {std_step_time:.3f} milliseconds") | ||
print(f"Step time: {avg_step_time:.3f} ± {std_step_time:.3f} ms ({len(filtered_df)} entries)") | ||
|
||
values_of_interest=[1,10,19,27,36,45,54,62,71,80] | ||
|
||
# Second analysis: Variable finetuning tokens | ||
filtered_df_2 = df[ | ||
(df['is_warmup_step'] == 0) & | ||
(df['num_decoding_tokens'] == 8) & | ||
(df['num_prefilling_tokens'] == 0) & | ||
(df['num_finetuning_fwd_tokens'] == 0) & | ||
(df['num_finetuning_bwd_tokens'] == 1024) & | ||
(df['num_bwd_layers'].isin(values_of_interest)) | ||
] | ||
filtered_df_2 = filtered_df_2[['num_bwd_layers', 'step_time']] | ||
|
||
# Create scatter plot | ||
plt.figure(figsize=(10, 6)) | ||
sns.scatterplot(data=filtered_df_2, | ||
x='num_bwd_layers', | ||
y='step_time', | ||
alpha=0.6) | ||
|
||
plt.title('Step Time vs Number of BWD Finetuning Layers\nMax Tokens per Batch: ' + str(num_tokens_per_batch)) | ||
plt.xlabel('Number of BWD Finetuning Layers') | ||
plt.ylabel('Step Time (milliseconds)') | ||
|
||
# Add trend line | ||
avg_std_df = filtered_df_2.groupby('num_bwd_layers').agg( | ||
avg_step_time=('step_time', 'mean'), | ||
std_step_time=('step_time', 'std') | ||
).reset_index() | ||
|
||
plt.errorbar(avg_std_df['num_bwd_layers'], | ||
avg_std_df['avg_step_time'], | ||
yerr=avg_std_df['std_step_time'], | ||
fmt='-o', | ||
color='red', | ||
ecolor='gray', | ||
elinewidth=2, | ||
capsize=4) | ||
|
||
plt.grid(True, linestyle='--', alpha=0.7) | ||
plt.tight_layout() | ||
|
||
plt.savefig(f'./plots/bwd_overhead_{num_tokens_per_batch}.pdf', bbox_inches='tight') | ||
|
||
# plt.show() | ||
|
||
if __name__ == "__main__": | ||
|
||
# Change working directory to folder containing this script | ||
abspath = os.path.abspath(__file__) | ||
dname = os.path.dirname(abspath) | ||
os.chdir(dname) | ||
|
||
# Make plots directory if it doesn't exist | ||
if not os.path.exists('./plots'): | ||
os.makedirs('./plots') | ||
|
||
tp_degree=8 | ||
|
||
for tokens_per_batch in [128, 256, 512]: | ||
fp=f"../inference/output/overhead_test/step_profiling_meta-llama_llama-3.1-70b_tensor_parallelism_{tp_degree}_max_requests_per_batch_8_max_tokens_per_batch_{tokens_per_batch}_arrival_rate_0.000000_num_warmup_requests_10.csv" | ||
|
||
plot_fwd_overhead(fp, tokens_per_batch) | ||
plot_bwd_overhead(fp, tokens_per_batch) |