-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
359 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
from typing import Any, Callable, Tuple, Union | ||
|
||
import numpy as np | ||
import pytest | ||
import torch | ||
from torch.autograd import gradcheck | ||
|
||
import pytorch_finufft | ||
|
||
torch.random.manual_seed(1234) | ||
|
||
|
||
def check_t1_batched_targets( | ||
F: Callable[..., Any], | ||
N: int, | ||
batchsize: Union[int, Tuple[int, ...]], | ||
dim: int, | ||
device: str, | ||
) -> None: | ||
if not isinstance(batchsize, tuple): | ||
batchsize = (batchsize,) | ||
|
||
slices = tuple(slice(None, N) for _ in range(dim)) | ||
g = np.mgrid[slices] * 2 * np.pi / N | ||
points = torch.from_numpy(g.reshape(dim, -1)).to(device) | ||
|
||
values = torch.randn(*batchsize, *points[0].shape, dtype=torch.complex128).to( | ||
device | ||
) | ||
|
||
print("N is " + str(N)) | ||
print("dim is " + str(dim)) | ||
print("shape of points is " + str(points.shape)) | ||
print("shape of values is " + str(values.shape)) | ||
|
||
output_shape = tuple(N for _ in range(dim)) | ||
|
||
finufft_out = F( | ||
points, | ||
values, | ||
output_shape, | ||
) | ||
|
||
against_torch = torch.fft.fftn( | ||
values.reshape(*batchsize, *g[0].shape), dim=tuple(range(-dim, 0)) | ||
) | ||
|
||
abs_errors = torch.abs(finufft_out - against_torch.reshape(finufft_out.shape)) | ||
l_inf_error = abs_errors.max() | ||
l_2_error = torch.sqrt(torch.sum(abs_errors**2)) | ||
l_1_error = torch.sum(abs_errors) | ||
|
||
assert l_inf_error < 4.5e-5 * N**1.1 | ||
assert l_2_error < 6e-5 * N**2.1 | ||
assert l_1_error < 1.2e-4 * N**3.2 | ||
|
||
points.requires_grad = True | ||
values.requires_grad = True | ||
|
||
def f(p, v): | ||
return F(p, v, output_shape) | ||
|
||
gradcheck(f, (points, values), eps=1e-8, atol=2e-4) | ||
|
||
|
||
values_cases = [ | ||
(2, 1, 1), # check that batch of 1 is happy | ||
(2, (2, 3), 1), | ||
(2, 2, 2), | ||
(2, (2, 1, 3), 3), | ||
] | ||
|
||
|
||
@pytest.mark.parametrize("N, batch, dim", values_cases) | ||
def test_t1_batching_CPU(N, batch, dim): | ||
check_t1_batched_targets( | ||
pytorch_finufft.functional.finufft_type1, N, batch, dim, "cpu" | ||
) | ||
|
||
|
||
@pytest.mark.parametrize("N, batch, dim", values_cases) | ||
def test_t1_batching_cuda(N, batch, dim): | ||
check_t1_batched_targets( | ||
pytorch_finufft.functional.finufft_type1, N, batch, dim, "cuda" | ||
) | ||
|
||
|
||
def batch_vmapped(batch: Union[int, Tuple[int, ...]]) -> Callable[..., Any]: | ||
if not isinstance(batch, tuple): | ||
batch = (batch,) | ||
|
||
F = pytorch_finufft.functional.finufft_type1 | ||
for _ in batch: | ||
F = torch.vmap(F, in_dims=(None, 0, None), out_dims=0) | ||
return F | ||
|
||
|
||
@pytest.mark.parametrize("N, batch, dim", values_cases) | ||
def test_t1_vmap_targets_CPU(N, batch, dim): | ||
check_t1_batched_targets(batch_vmapped(batch), N, batch, dim, "cpu") | ||
|
||
|
||
@pytest.mark.parametrize("N, batch, dim", values_cases) | ||
def test_t1_vmap_targets_cuda(N, batch, dim): | ||
check_t1_batched_targets(batch_vmapped(batch), N, batch, dim, "cuda") | ||
|
||
|
||
# because points are not natively batchable in finufft, we only test vmap | ||
def check_t1_vmapped_points( | ||
N: int, | ||
values_batchsize: Union[int, Tuple], | ||
dim: int, | ||
device: str, | ||
): | ||
if not isinstance(values_batchsize, tuple): | ||
values_batchsize = (values_batchsize,) | ||
|
||
slices = tuple(slice(None, N) for _ in range(dim)) | ||
g = np.mgrid[slices] * 2 * np.pi / N | ||
points = torch.from_numpy(g.reshape(dim, -1)).to(device) | ||
|
||
values = torch.randn( | ||
*values_batchsize, *points[0].shape, dtype=torch.complex128 | ||
).to(device) | ||
points = torch.stack( | ||
(points, points + 0.02), dim=0 | ||
) # slight perturbation to check that vmap is working | ||
|
||
print("N is " + str(N)) | ||
print("dim is " + str(dim)) | ||
print("shape of points is " + str(points.shape)) | ||
print("shape of values is " + str(values.shape)) | ||
|
||
output_shape = tuple(N for _ in range(dim)) | ||
|
||
F = torch.vmap( | ||
pytorch_finufft.functional.finufft_type1, | ||
in_dims=(0, 0 if values_batchsize else None, None), | ||
out_dims=0, | ||
) | ||
|
||
finufft_out = F( | ||
points, | ||
values, | ||
output_shape, | ||
) | ||
|
||
against_torch = torch.fft.fftn( | ||
values.reshape(*values_batchsize, *g[0].shape), dim=tuple(range(-dim, 0)) | ||
) | ||
if values_batchsize: | ||
against_torch = against_torch[0] | ||
abs_errors = torch.abs(finufft_out[0].ravel() - against_torch.ravel()) | ||
l_inf_error = abs_errors.max() | ||
l_2_error = torch.sqrt(torch.sum(abs_errors**2)) | ||
l_1_error = torch.sum(abs_errors) | ||
|
||
assert l_inf_error < 4.5e-5 * N**1.1 | ||
assert l_2_error < 6e-5 * N**2.1 | ||
assert l_1_error < 1.2e-4 * N**3.2 | ||
|
||
points.requires_grad = True | ||
values.requires_grad = True | ||
|
||
def f(p, v): | ||
return F(p, v, output_shape) | ||
|
||
gradcheck(f, (points, values), eps=1e-8, atol=2e-4) | ||
|
||
|
||
points_cases = [ | ||
(2, (), 1), | ||
(2, (), 2), | ||
(2, (), 3), | ||
(2, (2,), 1), | ||
(2, (2,), 2), | ||
(2, (2,), 3), | ||
] | ||
|
||
|
||
@pytest.mark.parametrize("N, batch, dim", points_cases) | ||
def test_t1_vmap_points_CPU(N, batch, dim): | ||
check_t1_vmapped_points(N, batch, dim, "cpu") | ||
|
||
|
||
@pytest.mark.parametrize("N, batch, dim", points_cases) | ||
def test_t1_vmap_points_cuda(N, batch, dim): | ||
check_t1_vmapped_points(N, batch, dim, "cuda") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,171 @@ | ||
from typing import Any, Callable, Tuple, Union | ||
|
||
import numpy as np | ||
import pytest | ||
import torch | ||
from torch.autograd import gradcheck | ||
|
||
import pytorch_finufft | ||
|
||
torch.random.manual_seed(1234) | ||
|
||
|
||
def check_t2_batched_targets( | ||
F: Callable[..., Any], | ||
N: int, | ||
batchsize: Union[int, Tuple[int, ...]], | ||
dim: int, | ||
device: str, | ||
) -> None: | ||
if not isinstance(batchsize, tuple): | ||
batchsize = (batchsize,) | ||
|
||
slices = tuple(slice(None, N) for _ in range(dim)) | ||
g = np.mgrid[slices] * 2 * np.pi / N | ||
points = torch.from_numpy(g.reshape(g.shape[0], -1)).to(device) | ||
|
||
targets = torch.randn(*batchsize, *g[0].shape, dtype=torch.complex128).to(device) | ||
|
||
print("N is " + str(N)) | ||
print("dim is " + str(dim)) | ||
print("shape of points is " + str(points.shape)) | ||
print("shape of targets is " + str(targets.shape)) | ||
|
||
finufft_out = F( | ||
points, | ||
targets, | ||
) | ||
|
||
against_torch = torch.fft.fftn(targets, dim=tuple(range(-dim, 0))) | ||
|
||
abs_errors = torch.abs(finufft_out - against_torch.reshape(finufft_out.shape)) | ||
l_inf_error = abs_errors.max() | ||
l_2_error = torch.sqrt(torch.sum(abs_errors**2)) | ||
l_1_error = torch.sum(abs_errors) | ||
|
||
assert l_inf_error < 4.5e-5 * N**1.1 | ||
assert l_2_error < 6e-5 * N**2.1 | ||
assert l_1_error < 1.2e-4 * N**3.2 | ||
|
||
points.requires_grad = True | ||
targets.requires_grad = True | ||
|
||
gradcheck(F, (points, targets), eps=1e-8, atol=2e-4) | ||
|
||
|
||
targets_cases = [ | ||
(2, 1, 1), # check that batch of 1 is happy | ||
(2, (2, 3), 1), | ||
(2, 2, 2), | ||
(2, (2, 1, 3), 3), | ||
] | ||
|
||
|
||
@pytest.mark.parametrize("N, batch, dim", targets_cases) | ||
def test_t2_batching_CPU(N, batch, dim): | ||
check_t2_batched_targets( | ||
pytorch_finufft.functional.finufft_type2, N, batch, dim, "cpu" | ||
) | ||
|
||
|
||
@pytest.mark.parametrize("N, batch, dim", targets_cases) | ||
def test_t2_batching_cuda(N, batch, dim): | ||
check_t2_batched_targets( | ||
pytorch_finufft.functional.finufft_type2, N, batch, dim, "cuda" | ||
) | ||
|
||
|
||
def batch_vmapped(batch: Union[int, Tuple[int, ...]]) -> Callable[..., Any]: | ||
if not isinstance(batch, tuple): | ||
batch = (batch,) | ||
|
||
F = pytorch_finufft.functional.finufft_type2 | ||
for _ in batch: | ||
F = torch.vmap(F, in_dims=(None, 0), out_dims=0) | ||
return F | ||
|
||
|
||
@pytest.mark.parametrize("N, batch, dim", targets_cases) | ||
def test_t2_vmap_targets_CPU(N, batch, dim): | ||
check_t2_batched_targets(batch_vmapped(batch), N, batch, dim, "cpu") | ||
|
||
|
||
@pytest.mark.parametrize("N, batch, dim", targets_cases) | ||
def test_t2_vmap_targets_cuda(N, batch, dim): | ||
check_t2_batched_targets(batch_vmapped(batch), N, batch, dim, "cuda") | ||
|
||
|
||
# because points are not natively batchable in finufft, we only test vmap | ||
def check_t2_vmapped_points( | ||
N: int, | ||
targets_batchsize: Union[int, Tuple], | ||
dim: int, | ||
device: str, | ||
): | ||
if not isinstance(targets_batchsize, tuple): | ||
targets_batchsize = (targets_batchsize,) | ||
|
||
slices = tuple(slice(None, N) for _ in range(dim)) | ||
g = np.mgrid[slices] * 2 * np.pi / N | ||
points = torch.from_numpy(g.reshape(g.shape[0], -1)).to(device) | ||
|
||
targets = torch.randn(*targets_batchsize, *g[0].shape, dtype=torch.complex128).to( | ||
device | ||
) | ||
points = torch.stack( | ||
(points, points + 0.02), dim=0 | ||
) # slight perturbation to check that vmap is working | ||
|
||
print("N is " + str(N)) | ||
print("dim is " + str(dim)) | ||
print("shape of points is " + str(points.shape)) | ||
print("shape of targets is " + str(targets.shape)) | ||
|
||
F = torch.vmap( | ||
pytorch_finufft.functional.finufft_type2, | ||
in_dims=(0, 0 if targets_batchsize else None), | ||
out_dims=0, | ||
) | ||
|
||
finufft_out = F( | ||
points, | ||
targets, | ||
) | ||
|
||
against_torch = torch.fft.fftn(targets, dim=tuple(range(-dim, 0))) | ||
|
||
if targets_batchsize: | ||
against_torch = against_torch[0] | ||
abs_errors = torch.abs(finufft_out[0].ravel() - against_torch.ravel()) | ||
l_inf_error = abs_errors.max() | ||
l_2_error = torch.sqrt(torch.sum(abs_errors**2)) | ||
l_1_error = torch.sum(abs_errors) | ||
|
||
assert l_inf_error < 4.5e-5 * N**1.1 | ||
assert l_2_error < 6e-5 * N**2.1 | ||
assert l_1_error < 1.2e-4 * N**3.2 | ||
|
||
points.requires_grad = True | ||
targets.requires_grad = True | ||
|
||
gradcheck(F, (points, targets), eps=1e-8, atol=2e-4) | ||
|
||
|
||
points_cases = [ | ||
(2, (), 1), | ||
(2, (), 2), | ||
(2, (), 3), | ||
(2, (2,), 1), | ||
(2, (2,), 2), | ||
(2, (2,), 3), | ||
] | ||
|
||
|
||
@pytest.mark.parametrize("N, batch, dim", points_cases) | ||
def test_t2_vmap_points_CPU(N, batch, dim): | ||
check_t2_vmapped_points(N, batch, dim, "cpu") | ||
|
||
|
||
@pytest.mark.parametrize("N, batch, dim", points_cases) | ||
def test_t2_vmap_points_cuda(N, batch, dim): | ||
check_t2_vmapped_points(N, batch, dim, "cuda") |