Skip to content

Commit

Permalink
support variant="integral(q)"
Browse files Browse the repository at this point in the history
  • Loading branch information
pbrubeck committed Oct 25, 2024
1 parent c723d50 commit 9345fff
Show file tree
Hide file tree
Showing 2 changed files with 45 additions and 44 deletions.
69 changes: 35 additions & 34 deletions FIAT/hellan_herrmann_johnson.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
#
# SPDX-License-Identifier: LGPL-3.0-or-later
from FIAT import dual_set, finite_element, polynomial_set, expansions
from FIAT.check_format_variant import check_format_variant
from FIAT.functional import (PointwiseInnerProductEvaluation,
ComponentPointEvaluation,
FrobeniusIntegralMoment)
Expand All @@ -18,13 +19,15 @@


class HellanHerrmannJohnsonDual(dual_set.DualSet):
def __init__(self, ref_el, degree, variant):
def __init__(self, ref_el, degree, variant, qdegree):
sd = ref_el.get_spatial_dimension()
top = ref_el.get_topology()
entity_ids = {dim: {i: [] for i in sorted(top[dim])} for dim in sorted(top)}
nodes = []

# Face dofs
if variant == "point":
# On each codim=1 facet, n^T u n is evaluated on a Pk lattice, where k = degree.
# n^T u n evaluated on a Pk lattice
for entity in sorted(top[sd-1]):
cur = len(nodes)
normal = ref_el.compute_scaled_normal(entity)
Expand All @@ -34,58 +37,55 @@ def __init__(self, ref_el, degree, variant):
entity_ids[sd-1][entity].extend(range(cur, len(nodes)))

elif variant == "integral":
# On each codim=1 facet, n^T u n is integrated against a basis for Pk, where k = degree.
# n^T u n integrated against a basis for Pk
facet = ref_el.construct_subelement(sd-1)
Q = create_quadrature(facet, 2*degree)
Q = create_quadrature(facet, qdegree + degree)
P = polynomial_set.ONPolynomialSet(facet, degree)
phis = P.tabulate(Q.get_points())[(0,)*(sd-1)]
Phis = P.tabulate(Q.get_points())[(0,)*(sd-1)]
for entity in sorted(top[sd-1]):
cur = len(nodes)
Q_mapped = FacetQuadratureRule(ref_el, sd-1, entity, Q)
detJ = Q_mapped.jacobian_determinant()
n = ref_el.compute_scaled_normal(entity)
comp = (n[:, None] * n[None, :]) / detJ
nodes.extend(FrobeniusIntegralMoment(ref_el, Q_mapped,
comp[:, :, None] * phi[None, None, :])
for phi in phis)
phis = comp[None, :, :, None] * Phis[:, None, None, :]
nodes.extend(FrobeniusIntegralMoment(ref_el, Q_mapped, phi) for phi in phis)
entity_ids[sd-1][entity].extend(range(cur, len(nodes)))
else:
raise ValueError(f"Invalid variant {variant}")

# Interior dofs
cur = len(nodes)
if variant == "point":
if sd != 2:
raise NotImplementedError("Pointwise dofs only implemented in 2D")
# On the interior, the independent components uij, i <= j,
# are evaluated at a Pk lattice, where k = degree - 1.
# independent components evaluated at a P_{k-1} lattice
shp = (sd, sd)
basis = [(i, j) for i in range(sd) for j in range(i, sd)]
pts = ref_el.make_points(sd, 0, degree + sd)
nodes.extend(ComponentPointEvaluation(ref_el, comp, shp, pt)
for comp in basis for pt in pts)
else:
# On the interior, u is integrated against a basis of nn bubbles
Q = create_quadrature(ref_el, 2*degree)
# u integrated against a P_k basis of nn bubbles
Q = create_quadrature(ref_el, qdegree + degree)
P = polynomial_set.ONPolynomialSet(ref_el, degree)
Phis = P.tabulate(Q.get_points())[(0,)*sd]
sym = lambda A: 0.5*(A + A.T)

v = numpy.array(ref_el.get_vertices())
sym_outer = lambda u, v: 0.5*(u[:, None]*v[None, :] + v[:, None]*u[None, :])
tt = lambda i, j, k, l: sym_outer(v[i % (sd+1)] - v[j % (sd+1)],
v[k % (sd+1)] - v[l % (sd+1)])

if sd == 3:
basis = [sym(numpy.outer(v[i] - v[j], v[m] - v[n]))
for i, j, m, n in [(0, 1, 2, 3), (0, 2, 1, 3)]]
for comp in basis:
phis = comp[None, :, :, None] * Phis[:, None, None, :]
nodes.extend(FrobeniusIntegralMoment(ref_el, Q, phi) for phi in phis)
elif sd > 3:
raise NotImplementedError(f"HHJ is not implemented in {sd} dimensions")
basis = [tt(i, i+1, i+2, i+3) for i in range((sd-2)*(sd-1))]
for comp in basis:
phis = comp[None, :, :, None] * Phis[:, None, None, :]
nodes.extend(FrobeniusIntegralMoment(ref_el, Q, phi) for phi in phis)

if degree > 0:
dimPkm1 = expansions.polynomial_dimension(ref_el, degree-1)
x = ref_el.compute_barycentric_coordinates(Q.get_points())
dimPkm1 = expansions.polynomial_dimension(ref_el, degree-1)
if dimPkm1 > 0:
x = numpy.transpose(ref_el.compute_barycentric_coordinates(Q.get_points()))
for i in sorted(top[0]):
comp = sym(numpy.outer(v[(i+1) % (sd+1)] - v[i], v[(i-1) % (sd+1)] - v[i]))
phis = comp[None, :, :, None] * x[None, None, None, :, i] * Phis[:dimPkm1, None, None, :]
comp = tt(i, i+1, i+2, i)
phis = comp[None, :, :, None] * Phis[:dimPkm1, None, None, :]
phis = numpy.multiply(phis, x[i], out=phis)
nodes.extend(FrobeniusIntegralMoment(ref_el, Q, phi) for phi in phis)

entity_ids[sd][0].extend(range(cur, len(nodes)))
Expand All @@ -95,15 +95,16 @@ def __init__(self, ref_el, degree, variant):

class HellanHerrmannJohnson(finite_element.CiarletElement):
"""The definition of Hellan-Herrmann-Johnson element.
HHJ(r) is the space of symmetric-matrix-valued polynomials of degree r
HHJ(k) is the space of symmetric-matrix-valued polynomials of degree k
or less with normal-normal continuity.
"""
def __init__(self, ref_el, degree, variant=None):
assert degree >= 0, "Hellan-Herrmann-Johnson starts at degree 0!"
if variant is None:
variant = "integral"
def __init__(self, ref_el, degree=0, variant=None):
if degree < 0:
raise ValueError(f"type(self).__name__ only defined for degree >= 0")

variant, qdegree = check_format_variant(variant, degree)
poly_set = polynomial_set.ONSymTensorPolynomialSet(ref_el, degree)
dual = HellanHerrmannJohnsonDual(ref_el, degree, variant)
dual = HellanHerrmannJohnsonDual(ref_el, degree, variant, qdegree)
sd = ref_el.get_spatial_dimension()
formdegree = (sd-1, sd-1)
mapping = "double contravariant piola"
Expand Down
20 changes: 10 additions & 10 deletions FIAT/regge.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,13 +9,14 @@
#
# SPDX-License-Identifier: LGPL-3.0-or-later
from FIAT import dual_set, finite_element, polynomial_set
from FIAT.check_format_variant import check_format_variant
from FIAT.functional import PointwiseInnerProductEvaluation, FrobeniusIntegralMoment
from FIAT.quadrature import FacetQuadratureRule
from FIAT.quadrature_schemes import create_quadrature


class ReggeDual(dual_set.DualSet):
def __init__(self, ref_el, degree, variant):
def __init__(self, ref_el, degree, variant, qdegree):
top = ref_el.get_topology()
entity_ids = {dim: {i: [] for i in sorted(top[dim])} for dim in sorted(top)}
nodes = []
Expand All @@ -39,7 +40,7 @@ def __init__(self, ref_el, degree, variant):
if dim == 0 or k < 0:
continue
facet = ref_el.construct_subelement(dim)
Q = create_quadrature(facet, degree + k)
Q = create_quadrature(facet, qdegree + k)
P = polynomial_set.ONPolynomialSet(facet, k)
phis = P.tabulate(Q.get_points())[(0,)*dim]
for entity in sorted(top[dim]):
Expand All @@ -52,23 +53,22 @@ def __init__(self, ref_el, degree, variant):
comp[:, :, None] * phi[None, None, :])
for phi in phis for comp in basis)
entity_ids[dim][entity].extend(range(cur, len(nodes)))
else:
raise ValueError(f"Invalid variant {variant}")

super().__init__(nodes, ref_el, entity_ids)


class Regge(finite_element.CiarletElement):
"""The generalized Regge elements for symmetric-matrix-valued functions.
REG(r) is the space of symmetric-matrix-valued polynomials of degree r
REG(k) is the space of symmetric-matrix-valued polynomials of degree k
or less with tangential-tangential continuity.
"""
def __init__(self, ref_el, degree, variant=None):
assert degree >= 0, "Regge start at degree 0!"
if variant is None:
variant = "integral"
def __init__(self, ref_el, degree=0, variant=None):
if degree < 0:
raise ValueError(f"type(self).__name__ only defined for degree >= 0")

variant, qdegree = check_format_variant(variant, degree)
poly_set = polynomial_set.ONSymTensorPolynomialSet(ref_el, degree)
dual = ReggeDual(ref_el, degree, variant)
dual = ReggeDual(ref_el, degree, variant, qdegree)
formdegree = (1, 1)
mapping = "double covariant piola"
super().__init__(poly_set, dual, degree, formdegree, mapping=mapping)

0 comments on commit 9345fff

Please sign in to comment.