forked from FEniCS/fiat
-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
102 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
# Copyright (C) 2015 Imperial College London and others. | ||
# | ||
# This file is part of FIAT (https://www.fenicsproject.org) | ||
# | ||
# SPDX-License-Identifier: LGPL-3.0-or-later | ||
# | ||
# Written by Pablo D. Brubeck ([email protected]), 2023 | ||
|
||
from FIAT import quadrature, reference_element | ||
import numpy | ||
|
||
""" | ||
@article{isaac2020recursive, | ||
title={Recursive, parameter-free, explicitly defined interpolation nodes for simplices}, | ||
author={Isaac, Tobin}, | ||
journal={SIAM Journal on Scientific Computing}, | ||
volume={42}, | ||
number={6}, | ||
pages={A4046--A4062}, | ||
year={2020}, | ||
publisher={SIAM} | ||
} | ||
""" | ||
|
||
class NodeFamily: | ||
""" Family of nodes on the unit interval. This class essentially is a lazy-evaluate-and-cache dictionary: the user passes a routine to evaluate entries for unknown keys """ | ||
|
||
def __init__(self, f): | ||
self._f = f | ||
self._cache = {} | ||
|
||
def __getitem__(self, key): | ||
try: | ||
return self._cache[key] | ||
except KeyError: | ||
value = self._f(key) | ||
self._cache[key] = value | ||
return value | ||
|
||
|
||
def recursive(d, n, alpha, family): | ||
'''The barycentric d-simplex coordinates for a | ||
multiindex alpha with length n, based on a 1D node family.''' | ||
b = numpy.zeros((d,), dtype="d") | ||
|
||
xn = family[n] | ||
if xn is None: | ||
return b | ||
if d == 2: | ||
b[:] = xn[[alpha[0],alpha[1]]] | ||
return b | ||
weight = 0.0 | ||
for i in range(d): | ||
alpha_noti = alpha[:i] + alpha[i+1:] | ||
n_noti = n - alpha[i] | ||
w = xn[n_noti] | ||
br = recursive(d-1, n_noti, alpha_noti, family) | ||
b[:i] += w * br[:i] | ||
b[i+1:] += w * br[i:] | ||
weight += w | ||
b /= weight | ||
return b | ||
|
||
def recursive_points(ref_el, order, rule="gll", interior=0): | ||
if rule == "gll": | ||
lr = quadrature.GaussLobattoLegendreQuadratureLineRule | ||
elif rule == "gl": | ||
lr = quadrature.GaussLegendreQuadratureLineRule | ||
else: | ||
raise ValueError("Unsupported quadrature rule %s" % rule) | ||
|
||
line = reference_element.UFCInterval() | ||
f = lambda n: numpy.array(lr(line, n+1).pts).flatten() if n>=1 else None | ||
family = NodeFamily(f) | ||
|
||
verts = ref_el.vertices | ||
tdim = len(verts) - 1 | ||
vs = numpy.array(verts) | ||
hs = vs[:-1, :] - vs[-1] | ||
|
||
get_point = lambda alpha: tuple(numpy.dot(recursive(tdim, order, alpha, family), hs) + vs[-1]) | ||
alphas = reference_element.lattice_iter(interior, order + 1 - interior, tdim) | ||
return list(map(get_point, alphas)) | ||
|
||
|
||
if __name__ == "__main__": | ||
ref_el = reference_element.ufc_simplex(2) | ||
h = 0.5 * numpy.sqrt(3) | ||
#ref_el.vertices = [(0, h), (-1.0, -h), (1.0, -h)] | ||
|
||
order = 7 | ||
rule = "gll" | ||
pts = recursive_points(ref_el, order, rule=rule) | ||
from matplotlib import pyplot as plt | ||
|
||
x = [] | ||
y = [] | ||
for p in pts: | ||
x.append(p[0]) | ||
y.append(p[1]) | ||
plt.scatter(x, y) | ||
plt.show() |