forked from FEniCS/fiat
-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
144 additions
and
74 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
# Copyright (C) 2023 Pablo Brubeck | ||
# | ||
# This file is part of FIAT. | ||
# | ||
# FIAT is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU Lesser General Public License as published by | ||
# the Free Software Foundation, either version 3 of the License, or | ||
# (at your option) any later version. | ||
# | ||
# FIAT is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU Lesser General Public License for more details. | ||
# | ||
# You should have received a copy of the GNU Lesser General Public License | ||
# along with FIAT. If not, see <http://www.gnu.org/licenses/>. | ||
|
||
import pytest | ||
import sympy | ||
import numpy | ||
from FIAT import expansions, quadrature, polynomial_set, reference_element | ||
from FIAT.reference_element import Point, UFCInterval, UFCTriangle, UFCTetrahedron | ||
|
||
P = Point() | ||
I = UFCInterval() # noqa: E741 | ||
T = UFCTriangle() | ||
S = UFCTetrahedron() | ||
|
||
|
||
@pytest.mark.parametrize('cell', [I, T, S]) | ||
def test_expansion_orthonormality(cell): | ||
U = expansions.ExpansionSet(cell) | ||
degree = 10 | ||
rule = quadrature.make_quadrature(cell, degree + 1) | ||
phi = U.tabulate(degree, rule.pts) | ||
w = rule.get_weights() | ||
scale = 0.5 ** -cell.get_spatial_dimension() | ||
results = scale * numpy.dot(phi, w[:, None] * phi.T) | ||
assert numpy.allclose(results, numpy.eye(results.shape[0])) | ||
|
||
|
||
@pytest.mark.parametrize('dim', range(1, 4)) | ||
def test_expansion_values(dim): | ||
cell = reference_element.default_simplex(dim) | ||
U = expansions.ExpansionSet(cell) | ||
dpoints = [] | ||
rpoints = [] | ||
|
||
npoints = 4 | ||
interior = 1 | ||
for alpha in reference_element.lattice_iter(interior, npoints+1-interior, dim): | ||
dpoints.append(tuple(2*numpy.array(alpha, dtype="d")/npoints-1)) | ||
rpoints.append(tuple(2*sympy.Rational(a, npoints)-1 for a in alpha)) | ||
|
||
n = 16 | ||
Uvals = U.tabulate(n, dpoints) | ||
idx = (lambda p: p, expansions.morton_index2, expansions.morton_index3)[dim-1] | ||
eta = sympy.DeferredVector("eta") | ||
half = sympy.Rational(1, 2) | ||
|
||
def duffy_coords(pt): | ||
if len(pt) == 1: | ||
return pt | ||
elif len(pt) == 2: | ||
eta0 = 2 * (1 + pt[0]) / (1 - pt[1]) - 1 | ||
eta1 = pt[1] | ||
return eta0, eta1 | ||
else: | ||
eta0 = 2 * (1 + pt[0]) / (-pt[1] - pt[2]) - 1 | ||
eta1 = 2 * (1 + pt[1]) / (1 - pt[2]) - 1 | ||
eta2 = pt[2] | ||
return eta0, eta1, eta2 | ||
|
||
def basis(dim, p, q=0, r=0): | ||
if dim >= 1: | ||
f = sympy.jacobi(p, 0, 0, eta[0]) | ||
f *= sympy.sqrt(half + p) | ||
if dim >= 2: | ||
f *= sympy.jacobi(q, 2*p+1, 0, eta[1]) * ((1 - eta[1])/2) ** p | ||
f *= sympy.sqrt(1 + p + q) | ||
if dim >= 3: | ||
f *= sympy.jacobi(r, 2*p+2*q+2, 0, eta[2]) * ((1 - eta[2])/2) ** (p+q) | ||
f *= sympy.sqrt(1 + half + p + q + r) | ||
return f | ||
|
||
def eval_basis(f, pt): | ||
fval = f | ||
for coord, pval in zip(eta, duffy_coords(pt)): | ||
fval = fval.subs(coord, pval) | ||
fval = float(fval) | ||
return fval | ||
|
||
for i in range(n + 1): | ||
for indices in polynomial_set.mis(dim, i): | ||
phi = basis(dim, *indices) | ||
exact = numpy.array([eval_basis(phi, r) for r in rpoints]) | ||
uh = Uvals[idx(*indices)] | ||
assert numpy.allclose(uh, exact, atol=1E-14) | ||
|
||
|
||
@pytest.mark.parametrize('cell', [I, T, S]) | ||
def test_expansion_derivatives_finite_differences(cell): | ||
dim = cell.get_spatial_dimension() | ||
U = expansions.ExpansionSet(cell) | ||
|
||
n = 10 | ||
npoints = 10 | ||
points = reference_element.make_lattice(cell.get_vertices(), npoints, variant="gl") | ||
points = numpy.array(points) | ||
|
||
|
||
vals, grad, hess = U.tabulate_jet(n, points, order=2) | ||
norm_grad = numpy.sqrt(vals**2 + numpy.linalg.norm(grad, axis=2)**2) | ||
norm_hess = numpy.sqrt(norm_grad**2 + numpy.linalg.norm(hess, "fro", axis=(2, 3))**2) | ||
norm_grad = numpy.max(norm_grad) | ||
norm_hess = numpy.max(norm_hess) | ||
eps = 1E-6 | ||
print(eps*norm_grad, eps*norm_hess) | ||
|
||
hs = [] | ||
errors_grad = [] | ||
errors_hess = [] | ||
for k in range(4): | ||
h = (1/n**2) * (0.5**k) | ||
hs.append(h) | ||
gradh = numpy.stack([(U.tabulate(n, points + dx[None,:]) - | ||
U.tabulate(n, points - dx[None,:])) / h | ||
for dx in (0.5*h)*numpy.eye(dim)], axis=2) | ||
errors_grad.append(numpy.maximum(eps*norm_grad*(h**2), numpy.linalg.norm(grad - gradh, axis=2))) | ||
|
||
hessh = numpy.stack([numpy.stack([ | ||
(U.tabulate(n, points + (dx + dy)[None,:]) - | ||
U.tabulate(n, points + (dx - dy)[None,:]) - | ||
U.tabulate(n, points - (dx - dy)[None,:]) + | ||
U.tabulate(n, points - (dx + dy)[None,:])) / h**2 | ||
for dx in (0.5*h)*numpy.eye(dim)], axis=2) | ||
for dy in (0.5*h)*numpy.eye(dim)], axis=3) | ||
errors_hess.append(numpy.maximum(eps*norm_hess*(h**2), numpy.linalg.norm(hess - hessh, "fro", axis=(2, 3)))) | ||
|
||
rate_grad = numpy.diff(numpy.log(errors_grad), axis=0) / numpy.diff(numpy.log(hs))[:, None, None] | ||
assert numpy.all(rate_grad > 1.9) | ||
|
||
rate_hess = numpy.diff(numpy.log(errors_hess), axis=0) / numpy.diff(numpy.log(hs))[:, None, None] | ||
assert numpy.all(rate_hess > 1.9) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters