Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor: convert prepare-test-weights.sh to python #152

Merged
merged 1 commit into from
Dec 15, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion CONTRIBUTING.md
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ rye sync --features test,conversion
Then, download and convert all the necessary weights. Be aware that this will use around 50 GB of disk space:

```bash
./scripts/prepare-test-weights.sh
rye run python scripts/prepare_test_weights.py
```

Finally, run the tests:
Expand Down
2 changes: 2 additions & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,8 @@ conversion = [
"diffusers>=0.24.0",
"transformers>=4.35.2",
"segment-anything-py>=1.0",
"requests>=2.26.0",
"tqdm>=4.62.3",
]

[build-system]
Expand Down
5 changes: 4 additions & 1 deletion scripts/conversion/convert_diffusers_autoencoder_kl.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,8 +18,11 @@ class Args(argparse.Namespace):

def setup_converter(args: Args) -> ModelConverter:
target = LatentDiffusionAutoencoder()
# low_cpu_mem_usage=False stops some annoying console messages us to `pip install accelerate`
source: nn.Module = AutoencoderKL.from_pretrained( # type: ignore
pretrained_model_name_or_path=args.source_path, subfolder=args.subfolder
pretrained_model_name_or_path=args.source_path,
subfolder=args.subfolder,
low_cpu_mem_usage=False,
) # type: ignore
x = torch.randn(1, 3, 512, 512)
converter = ModelConverter(source_model=source, target_model=target, skip_output_check=True, verbose=args.verbose)
Expand Down
6 changes: 5 additions & 1 deletion scripts/conversion/convert_diffusers_controlnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,11 @@ class Args(argparse.Namespace):

@torch.no_grad()
def convert(args: Args) -> dict[str, torch.Tensor]:
controlnet_src: nn.Module = ControlNetModel.from_pretrained(pretrained_model_name_or_path=args.source_path) # type: ignore
# low_cpu_mem_usage=False stops some annoying console messages us to `pip install accelerate`
controlnet_src: nn.Module = ControlNetModel.from_pretrained( # type: ignore
pretrained_model_name_or_path=args.source_path,
low_cpu_mem_usage=False,
)
unet = SD1UNet(in_channels=4)
adapter = SD1ControlnetAdapter(unet, name="mycn").inject()
controlnet = unet.Controlnet
Expand Down
6 changes: 5 additions & 1 deletion scripts/conversion/convert_diffusers_lora.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,11 @@ class Args(argparse.Namespace):
@torch.no_grad()
def process(args: Args) -> None:
diffusers_state_dict = cast(dict[str, Tensor], torch.load(args.source_path, map_location="cpu")) # type: ignore
diffusers_sd = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path=args.base_model) # type: ignore
# low_cpu_mem_usage=False stops some annoying console messages us to `pip install accelerate`
diffusers_sd = DiffusionPipeline.from_pretrained( # type: ignore
pretrained_model_name_or_path=args.base_model,
low_cpu_mem_usage=False,
)
diffusers_model = cast(fl.Module, diffusers_sd.unet) # type: ignore

refiners_model = SD1UNet(in_channels=4)
Expand Down
6 changes: 5 additions & 1 deletion scripts/conversion/convert_diffusers_t2i_adapter.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,11 @@

sdxl = "xl" in args.source_path
target = ConditionEncoderXL() if sdxl else ConditionEncoder()
source: nn.Module = T2IAdapter.from_pretrained(pretrained_model_name_or_path=args.source_path) # type: ignore
# low_cpu_mem_usage=False stops some annoying console messages us to `pip install accelerate`
source: nn.Module = T2IAdapter.from_pretrained( # type: ignore
pretrained_model_name_or_path=args.source_path,
low_cpu_mem_usage=False,
)
assert isinstance(source, nn.Module), "Source model is not a nn.Module"

x = torch.randn(1, 3, 1024, 1024) if sdxl else torch.randn(1, 3, 512, 512)
Expand Down
5 changes: 4 additions & 1 deletion scripts/conversion/convert_diffusers_unet.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,11 @@ class Args(argparse.Namespace):


def setup_converter(args: Args) -> ModelConverter:
# low_cpu_mem_usage=False stops some annoying console messages us to `pip install accelerate`
source: nn.Module = UNet2DConditionModel.from_pretrained( # type: ignore
pretrained_model_name_or_path=args.source_path, subfolder="unet"
pretrained_model_name_or_path=args.source_path,
subfolder="unet",
low_cpu_mem_usage=False,
)
source_in_channels: int = source.config.in_channels # type: ignore
source_clip_embedding_dim: int = source.config.cross_attention_dim # type: ignore
Expand Down
5 changes: 4 additions & 1 deletion scripts/conversion/convert_transformers_clip_image_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,8 +21,11 @@ class Args(argparse.Namespace):


def setup_converter(args: Args) -> ModelConverter:
# low_cpu_mem_usage=False stops some annoying console messages us to `pip install accelerate`
source: nn.Module = CLIPVisionModelWithProjection.from_pretrained( # type: ignore
pretrained_model_name_or_path=args.source_path, subfolder=args.subfolder
pretrained_model_name_or_path=args.source_path,
subfolder=args.subfolder,
low_cpu_mem_usage=False,
)
assert isinstance(source, nn.Module), "Source model is not a nn.Module"
architecture: str = source.config.architectures[0] # type: ignore
Expand Down
5 changes: 4 additions & 1 deletion scripts/conversion/convert_transformers_clip_text_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,11 @@ class Args(argparse.Namespace):


def setup_converter(args: Args) -> ModelConverter:
# low_cpu_mem_usage=False stops some annoying console messages us to `pip install accelerate`
source: nn.Module = CLIPTextModelWithProjection.from_pretrained( # type: ignore
pretrained_model_name_or_path=args.source_path, subfolder=args.subfolder
pretrained_model_name_or_path=args.source_path,
subfolder=args.subfolder,
low_cpu_mem_usage=False,
)
assert isinstance(source, nn.Module), "Source model is not a nn.Module"
architecture: str = source.config.architectures[0] # type: ignore
Expand Down
Loading