Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add typehints #17

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 22 additions & 32 deletions rdp/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,47 +8,43 @@
:license: MIT, see LICENSE.txt for more details.

"""
from math import sqrt
from functools import partial
import numpy as np
import sys
from typing import Callable, Literal, overload

if sys.version_info[0] >= 3:
xrange = range


def pldist(point, start, end):
DistanceFunction = Callable[[np.ndarray, np.ndarray, np.ndarray], float]

def pldist(point: np.ndarray, start: np.ndarray, end: np.ndarray) -> float:
"""
Calculates the distance from ``point`` to the line given
by the points ``start`` and ``end``.

:param point: a point
:type point: numpy array
:param start: a point of the line
:type start: numpy array
:param end: another point of the line
:type end: numpy array
"""
if np.all(np.equal(start, end)):
return np.linalg.norm(point - start)
return float(np.linalg.norm(point - start))

return np.divide(
np.abs(np.linalg.norm(np.cross(end - start, start - point))),
np.linalg.norm(end - start))


def rdp_rec(M, epsilon, dist=pldist):
def rdp_rec(M: np.ndarray, epsilon: float, dist: DistanceFunction = pldist) -> np.ndarray:
"""
Simplifies a given array of points.

Recursive version.

:param M: an array
:type M: numpy array
:param M: an array of points, see :func:`rdp.rdp`
:param epsilon: epsilon in the rdp algorithm
:type epsilon: float
:param dist: distance function
:type dist: function with signature ``f(point, start, end)`` -- see :func:`rdp.pldist`
:param dist: distance function with signature ``f(point, start, end)`` -- see :func:`rdp.pldist`
"""
dmax = 0.0
index = -1
Expand All @@ -69,7 +65,7 @@ def rdp_rec(M, epsilon, dist=pldist):
return np.vstack((M[0], M[-1]))


def _rdp_iter(M, start_index, last_index, epsilon, dist=pldist):
def _rdp_iter(M: np.ndarray, start_index: int, last_index: int, epsilon: float, dist: DistanceFunction = pldist):
stk = []
stk.append([start_index, last_index])
global_start_index = start_index
Expand Down Expand Up @@ -98,20 +94,16 @@ def _rdp_iter(M, start_index, last_index, epsilon, dist=pldist):
return indices


def rdp_iter(M, epsilon, dist=pldist, return_mask=False):
def rdp_iter(M: np.ndarray, epsilon: float, dist: DistanceFunction = pldist, return_mask=False) -> np.ndarray:
"""
Simplifies a given array of points.

Iterative version.

:param M: an array
:type M: numpy array
:param M: an array of points, see :func:`rdp.rdp`
:param epsilon: epsilon in the rdp algorithm
:type epsilon: float
:param dist: distance function
:type dist: function with signature ``f(point, start, end)`` -- see :func:`rdp.pldist`
:param dist: distance function with signature ``f(point, start, end)`` -- see :func:`rdp.pldist`
:param return_mask: return the mask of points to keep instead
:type return_mask: bool
"""
mask = _rdp_iter(M, 0, len(M) - 1, epsilon, dist)

Expand All @@ -121,7 +113,7 @@ def rdp_iter(M, epsilon, dist=pldist, return_mask=False):
return M[mask]


def rdp(M, epsilon=0, dist=pldist, algo="iter", return_mask=False):
def rdp(M: np.ndarray, epsilon: float = 0.0, dist: DistanceFunction = pldist, algo: Literal["iter", "rec"] = "iter", return_mask=False) -> np.ndarray:
"""
Simplifies a given array of points using the Ramer-Douglas-Peucker
algorithm.
Expand Down Expand Up @@ -157,26 +149,24 @@ def rdp(M, epsilon=0, dist=pldist, algo="iter", return_mask=False):
array([[1, 1],
[4, 4]])

:param M: a series of points
:type M: numpy array with shape ``(n,d)`` where ``n`` is the number of points and ``d`` their dimension
:param M: a series of points as numpy array with shape ``(n,d)`` where ``n`` is the number of points and ``d`` their dimension
:param epsilon: epsilon in the rdp algorithm
:type epsilon: float
:param dist: distance function
:type dist: function with signature ``f(point, start, end)`` -- see :func:`rdp.pldist`
:param dist: distance function with signature ``f(point, start, end)`` -- see :func:`rdp.pldist`
:param algo: either ``iter`` for an iterative algorithm or ``rec`` for a recursive algorithm
:type algo: string
:param return_mask: return mask instead of simplified array
:type return_mask: bool
"""

algo_function: Callable[[np.ndarray, float, DistanceFunction], np.ndarray]

if algo == "iter":
algo = partial(rdp_iter, return_mask=return_mask)
algo_function = partial(rdp_iter, return_mask=return_mask)
elif algo == "rec":
if return_mask:
raise NotImplementedError("return_mask=True not supported with algo=\"rec\"")
algo = rdp_rec
algo_function = rdp_rec

if "numpy" in str(type(M)):
return algo(M, epsilon, dist)
return algo_function(M, epsilon, dist)

return algo(np.array(M), epsilon, dist).tolist()
# This is a 'secret feature': Use the rdp function with lists of data.
return algo_function(np.array(M), epsilon, dist).tolist()
Empty file added rdp/py.typed
Empty file.