forked from pytorch/torchtune
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Resizable image positional embeddings (pytorch#1695)
Co-authored-by: Felipe Mello <[email protected]>
- Loading branch information
1 parent
10b02e0
commit 55b4814
Showing
3 changed files
with
787 additions
and
27 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
349 changes: 349 additions & 0 deletions
349
tests/torchtune/models/clip/test_pos_embedding_interpolation.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,349 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
import math | ||
|
||
import pytest | ||
import torch | ||
|
||
from tests.test_utils import assert_expected | ||
|
||
from torchtune.models.clip._position_embeddings import ( | ||
TiledTokenPositionalEmbedding, | ||
TilePositionalEmbedding, | ||
) | ||
|
||
# generated comparing vs fairinternal/internal-llama-models | ||
tile_pos_emb_test_cases = [ | ||
{ | ||
"tgt_max_num_tiles": 1, | ||
"input_tensor": torch.tensor( | ||
[[[[0.0, 1.0]], [[2.0, 3.0]]], [[[4.0, 5.0]], [[6.0, 7.0]]]] | ||
), | ||
"expected_output": torch.tensor([[[[0.0, 1.0]]]]), | ||
}, | ||
{ | ||
"tgt_max_num_tiles": 3, | ||
"input_tensor": torch.tensor([[[[0.0]]]]), | ||
"expected_output": torch.tensor( | ||
[ | ||
[[[0.0]], [[0.0]], [[0.0]]], | ||
[[[0.0]], [[0.0]], [[0.0]]], | ||
[[[0.0]], [[0.0]], [[0.0]]], | ||
] | ||
), | ||
}, | ||
{ | ||
"tgt_max_num_tiles": 2, | ||
"input_tensor": torch.tensor( | ||
[ | ||
[[[0.0, 1.0]], [[2.0, 3.0]], [[4.0, 5.0]]], | ||
[[[6.0, 7.0]], [[8.0, 9.0]], [[10.0, 11.0]]], | ||
[[[12.0, 13.0]], [[14.0, 15.0]], [[16.0, 17.0]]], | ||
] | ||
), | ||
"expected_output": torch.tensor( | ||
[[[[0.0, 1.0]], [[4.0, 5.0]]], [[[12.0, 13.0]], [[16.0, 17.0]]]] | ||
), | ||
}, | ||
] | ||
|
||
local_pos_emb_test_cases = [ | ||
{ | ||
"tgt_patch_grid_size": 2, | ||
"expected_shape": torch.Size([5, 2]), | ||
"input_tensor": torch.tensor( | ||
[[0.0, 1.0], [2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0]] | ||
), | ||
"expected_output": torch.tensor( | ||
[[0.0, 1.0], [2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0]] | ||
), | ||
}, | ||
{ | ||
"tgt_patch_grid_size": 1, | ||
"expected_shape": torch.Size([2, 1]), | ||
"input_tensor": torch.tensor([[0.0], [1.0], [2.0], [3.0], [4.0]]), | ||
"expected_output": torch.tensor([[0.0], [1.0]]), | ||
}, | ||
{ | ||
"tgt_patch_grid_size": 2, | ||
"expected_shape": torch.Size([5, 2]), | ||
"input_tensor": torch.tensor([[0.0, 1.0], [2.0, 3.0]]), | ||
"expected_output": torch.tensor( | ||
[[0.0, 1.0], [2.0, 3.0], [2.0, 3.0], [2.0, 3.0], [2.0, 3.0]] | ||
), | ||
}, | ||
] | ||
|
||
global_pos_emb_test_cases = [ | ||
{ | ||
"tgt_max_num_tiles": 1, | ||
"tgt_patch_grid_size": 2, | ||
"input_tensor": torch.tensor( | ||
[ | ||
[ | ||
[[0.0, 1.0], [2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0]], | ||
[ | ||
[10.0, 11.0], | ||
[12.0, 13.0], | ||
[14.0, 15.0], | ||
[16.0, 17.0], | ||
[18.0, 19.0], | ||
], | ||
], | ||
[ | ||
[ | ||
[20.0, 21.0], | ||
[22.0, 23.0], | ||
[24.0, 25.0], | ||
[26.0, 27.0], | ||
[28.0, 29.0], | ||
], | ||
[ | ||
[30.0, 31.0], | ||
[32.0, 33.0], | ||
[34.0, 35.0], | ||
[36.0, 37.0], | ||
[38.0, 39.0], | ||
], | ||
], | ||
] | ||
), | ||
"expected_output": torch.tensor( | ||
[[[[0.0, 1.0], [2.0, 3.0], [14.0, 15.0], [26.0, 27.0], [38.0, 39.0]]]] | ||
), | ||
}, | ||
{ | ||
"tgt_max_num_tiles": 3, | ||
"tgt_patch_grid_size": 1, | ||
"input_tensor": torch.tensor([[[[0.0], [1.0], [2.0], [3.0], [4.0]]]]), | ||
"expected_output": torch.tensor( | ||
[ | ||
[[[0.0000], [1.0000]], [[0.0000], [1.5000]], [[0.0000], [2.0000]]], | ||
[[[0.0000], [2.0000]], [[0.0000], [2.5000]], [[0.0000], [3.0000]]], | ||
[[[0.0000], [3.0000]], [[0.0000], [3.5000]], [[0.0000], [4.0000]]], | ||
] | ||
), | ||
}, | ||
{ | ||
"tgt_max_num_tiles": 2, | ||
"tgt_patch_grid_size": 2, | ||
"input_tensor": torch.tensor( | ||
[ | ||
[ | ||
[[0.0, 1.0], [2.0, 3.0]], | ||
[[4.0, 5.0], [6.0, 7.0]], | ||
[[8.0, 9.0], [10.0, 11.0]], | ||
], | ||
[ | ||
[[12.0, 13.0], [14.0, 15.0]], | ||
[[16.0, 17.0], [18.0, 19.0]], | ||
[[20.0, 21.0], [22.0, 23.0]], | ||
], | ||
[ | ||
[[24.0, 25.0], [26.0, 27.0]], | ||
[[28.0, 29.0], [30.0, 31.0]], | ||
[[32.0, 33.0], [34.0, 35.0]], | ||
], | ||
] | ||
), | ||
"expected_output": torch.tensor( | ||
[ | ||
[ | ||
[ | ||
[0.0000, 1.0000], | ||
[2.0000, 3.0000], | ||
[4.6667, 5.6667], | ||
[10.0000, 11.0000], | ||
[12.6667, 13.6667], | ||
], | ||
[ | ||
[8.0000, 9.0000], | ||
[7.3333, 8.3333], | ||
[10.0000, 11.0000], | ||
[15.3333, 16.3333], | ||
[18.0000, 19.0000], | ||
], | ||
], | ||
[ | ||
[ | ||
[24.0000, 25.0000], | ||
[18.0000, 19.0000], | ||
[20.6667, 21.6667], | ||
[26.0000, 27.0000], | ||
[28.6667, 29.6667], | ||
], | ||
[ | ||
[32.0000, 33.0000], | ||
[23.3333, 24.3333], | ||
[26.0000, 27.0000], | ||
[31.3333, 32.3333], | ||
[34.0000, 35.0000], | ||
], | ||
], | ||
] | ||
), | ||
}, | ||
] | ||
|
||
|
||
class TestPositionalEmbeddingsInterpolation: | ||
@pytest.mark.parametrize("params", tile_pos_emb_test_cases) | ||
def test_tile_resize_position_embedding(self, params): | ||
tgt_max_num_tiles = params["tgt_max_num_tiles"] | ||
expected_output = params["expected_output"] | ||
embedding = params["input_tensor"] | ||
|
||
resized_pos_embed = TilePositionalEmbedding._resize_position_embedding( | ||
embedding, tgt_max_num_tiles | ||
) | ||
|
||
assert_expected(resized_pos_embed, expected_output, atol=1e-3, rtol=1e-4) | ||
|
||
@pytest.mark.parametrize("params", local_pos_emb_test_cases) | ||
def test_resize_local_position_embedding(self, params): | ||
input_tensor = params["input_tensor"] | ||
tgt_patch_grid_size = params["tgt_patch_grid_size"] | ||
expected_output = params["expected_output"] | ||
|
||
resized_pos_embed = ( | ||
TiledTokenPositionalEmbedding._resize_local_position_embedding( | ||
input_tensor, tgt_patch_grid_size | ||
) | ||
) | ||
|
||
assert_expected(resized_pos_embed, expected_output, atol=1e-3, rtol=1e-4) | ||
|
||
@pytest.mark.parametrize("params", global_pos_emb_test_cases) | ||
def test_resize_global_position_embedding(self, params): | ||
input_tensor = params["input_tensor"] | ||
tgt_max_num_tiles = params["tgt_max_num_tiles"] | ||
tgt_patch_grid_size = params["tgt_patch_grid_size"] | ||
expected_output = params["expected_output"] | ||
|
||
resized_pos_embed = ( | ||
TiledTokenPositionalEmbedding._resize_global_position_embedding( | ||
input_tensor, tgt_max_num_tiles, tgt_patch_grid_size | ||
) | ||
) | ||
|
||
assert_expected(resized_pos_embed, expected_output, atol=1e-3, rtol=1e-4) | ||
|
||
@pytest.mark.parametrize( | ||
"local_params, global_params", | ||
zip(local_pos_emb_test_cases, global_pos_emb_test_cases), | ||
) | ||
def test_load_state_dict_hook_tiled_token(self, local_params, global_params): | ||
# Corrected parameters for instantiation | ||
global_max_num_tiles = global_params["expected_output"].shape[0] | ||
global_embed_dim = global_params["expected_output"].shape[-1] | ||
n_tokens_per_tile = local_params["expected_output"].shape[ | ||
0 | ||
] # Assuming first dimension is tokens per tile | ||
patch_grid_size = int(math.sqrt(n_tokens_per_tile - 1)) | ||
tile_size = patch_grid_size * 1 # Assuming patch_size is 1 for simplicity | ||
patch_size = 1 | ||
|
||
# Instantiate the model | ||
model = TiledTokenPositionalEmbedding( | ||
max_num_tiles=global_max_num_tiles, | ||
embed_dim=global_embed_dim, | ||
tile_size=tile_size, | ||
patch_size=patch_size, | ||
) | ||
|
||
# Create state_dict mimicking loading scenario | ||
state_dict = { | ||
"model.local_token_positional_embedding": local_params["input_tensor"], | ||
"model.global_token_positional_embedding": global_params["input_tensor"], | ||
} | ||
|
||
# Call the hook directly (simulating loading process) | ||
state_dict_copy = state_dict.copy() | ||
model._load_state_dict_hook(state_dict_copy, "model.") | ||
|
||
# Assert expected outputs | ||
assert_expected( | ||
state_dict_copy["model.local_token_positional_embedding"], | ||
local_params["expected_output"], | ||
atol=1e-3, | ||
rtol=1e-4, | ||
) | ||
assert_expected( | ||
state_dict_copy["model.global_token_positional_embedding"], | ||
global_params["expected_output"], | ||
atol=1e-3, | ||
rtol=1e-4, | ||
) | ||
|
||
# Check for errors with non-square token grid sizes | ||
with pytest.raises(ValueError): | ||
bad_state_dict = state_dict.copy() | ||
|
||
# add +1 to num_token dimension to make it non-square | ||
local_pos_emb = bad_state_dict["model.local_token_positional_embedding"] | ||
bad_local_pos_emb = torch.cat( | ||
(local_pos_emb, local_pos_emb[0].unsqueeze(0)), dim=0 | ||
) | ||
bad_state_dict["model.local_token_positional_embedding"] = bad_local_pos_emb | ||
|
||
# call | ||
model._load_state_dict_hook(bad_state_dict, "model.") | ||
|
||
# Check for errors with non-square tile grid sizes | ||
with pytest.raises(ValueError): | ||
bad_state_dict = state_dict.copy() | ||
|
||
# add +1 to num_token dimension to make it non-square | ||
global_pos_emb = bad_state_dict["model.global_token_positional_embedding"] | ||
bad_global_pos_emb = torch.cat( | ||
(global_pos_emb, global_pos_emb[:, :, [0]]), dim=2 | ||
) | ||
bad_state_dict[ | ||
"model.global_token_positional_embedding" | ||
] = bad_global_pos_emb | ||
|
||
# call | ||
model._load_state_dict_hook(bad_state_dict, "model.") | ||
|
||
@pytest.mark.parametrize("params", tile_pos_emb_test_cases) | ||
def test_load_state_dict_hook_tile(self, params): | ||
|
||
# Extract parameters for instantiation | ||
max_num_tiles = params["expected_output"].shape[0] | ||
embed_dim = params["expected_output"].shape[-1] | ||
|
||
# Instantiate the model | ||
model = TilePositionalEmbedding( | ||
max_num_tiles=max_num_tiles, | ||
embed_dim=embed_dim, | ||
) | ||
# Create state_dict mimicking loading scenario | ||
state_dict = { | ||
"model.embedding": params["input_tensor"], | ||
} | ||
|
||
# Call the hook | ||
state_dict_copy = state_dict.copy() | ||
model._load_state_dict_hook(state_dict_copy, "model.") | ||
|
||
# Assert expected outputs | ||
assert_expected( | ||
state_dict_copy["model.embedding"], | ||
params["expected_output"], | ||
atol=1e-3, | ||
rtol=1e-4, | ||
) | ||
|
||
# Check for errors with non-square tile grid sizes | ||
with pytest.raises(ValueError): | ||
bad_state_dict = state_dict.copy() | ||
# Manipulate the tensor to have non-equal max_num_tiles_x and max_num_tiles_y | ||
bad_tensor = torch.cat( | ||
(params["input_tensor"], params["input_tensor"][:, [0], :, :]), dim=1 | ||
) | ||
bad_state_dict["model.embedding"] = bad_tensor | ||
model._load_state_dict_hook(bad_state_dict, "model.") |
Oops, something went wrong.