Skip to content

Commit

Permalink
Add KD distributed recipe (pytorch#1631)
Browse files Browse the repository at this point in the history
  • Loading branch information
lindawangg authored Oct 29, 2024
1 parent 48a8449 commit 09c2619
Show file tree
Hide file tree
Showing 5 changed files with 1,502 additions and 0 deletions.
130 changes: 130 additions & 0 deletions recipes/configs/llama3_2/knowledge_distillation_distributed.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
# Config for multi-device knowledge distillation in knowledge_distillation_distributed.py
# using a teacher and student model
#
# This config assumes that you've ran the following commands before launching KD:
# First download the student and teacher models
# tune download meta-llama/Llama-3.2-1B-Instruct --output-dir /tmp/Llama-3.2-1B-Instruct --ignore-patterns "original/consolidated.00.pth"
# tune download meta-llama/Meta-Llama-3.1-8B-Instruct --output-dir /tmp/Meta-Llama-3.1-8B-Instruct --ignore-patterns "original/consolidated.00.pth"
#
# You get better results using KD if the teacher model has already been fine-tuned on the target dataset:
# tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config llama3_1/8B_lora
#
# To launch on 2 devices, run the following command from root:
# tune run --nnodes 1 --nproc_per_node 2 knowledge_distillation_distributed --config llama3_2/knowledge_distillation_distributed
#
# This config works best for distilling on 2+ devices.


# Model Arguments
model:
_component_: torchtune.models.llama3_2.lora_llama3_2_1b
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj']
apply_lora_to_mlp: True
apply_lora_to_output: False
lora_rank: 64
lora_alpha: 128
lora_dropout: 0.0

teacher_model:
_component_: torchtune.models.llama3_1.llama3_1_8b

# Tokenizer
tokenizer:
_component_: torchtune.models.llama3.llama3_tokenizer
path: /tmp/Llama-3.2-1B-Instruct/original/tokenizer.model
max_seq_len: null

checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Llama-3.2-1B-Instruct/
checkpoint_files: [
model.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Llama-3.2-1B-Instruct/
model_type: LLAMA3
resume_from_checkpoint: False
save_adapter_weights_only: False

# Teacher checkpoint
teacher_checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Meta-Llama-3.1-8B-Instruct/
checkpoint_files: [
model-00001-of-00004.safetensors,
model-00002-of-00004.safetensors,
model-00003-of-00004.safetensors,
model-00004-of-00004.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Meta-Llama-3.1-8B-Instruct/
model_type: LLAMA3

# Dataset and Sampler
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
seed: null
shuffle: True
batch_size: 4

# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
fused: True
weight_decay: 0.01
lr: 3e-4
lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 100

loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss

kd_loss:
_component_: torchtune.modules.loss.ForwardKLWithChunkedOutputLoss
kd_ratio: 0.5

# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 32

# Logging
output_dir: /tmp/kd_output
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: 1
log_peak_memory_stats: False

# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: False

# Show case the usage of pytorch profiler
# Set enabled to False as it's only needed for debugging training
profiler:
_component_: torchtune.training.setup_torch_profiler

enabled: False

#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs

#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True

#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False

# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 5
active_steps: 2
num_cycles: 1
123 changes: 123 additions & 0 deletions recipes/configs/qwen2/knowledge_distillation_distributed.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
# Config for multi-device knowledge distillation in knowledge_distillation_distributed.py
# using a teacher and student model
#
# This config assumes that you've ran the following commands before launching KD:
# First download the student and teacher models
# tune download Qwen/Qwen2-0.5B-Instruct --output-dir /tmp/Qwen2-0.5B-Instruct --ignore-patterns None
# tune download Qwen/Qwen2-1.5B-Instruct --output-dir /tmp/Qwen2-1.5B-Instruct --ignore-patterns None
#
# You get better results using KD if the teacher model has already been fine-tuned on the target dataset:
# tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config qwen2/1.5B_lora
#
# To launch on 2 devices, run the following command from root:
# tune run --nnodes 1 --nproc_per_node 2 knowledge_distillation_distributed --config qwen2/knowledge_distillation_distributed
#
# This config works best for distilling on 2+ devices.


# Model Arguments
model:
_component_: torchtune.models.qwen2.lora_qwen2_0_5b
lora_attn_modules: ['q_proj', 'k_proj', 'v_proj']
apply_lora_to_mlp: False
lora_rank: 32
lora_alpha: 64

teacher_model:
_component_: torchtune.models.qwen2.qwen2_1_5b

tokenizer:
_component_: torchtune.models.qwen2.qwen2_tokenizer
path: /tmp/Qwen2-0.5B-Instruct/vocab.json
merges_file: /tmp/Qwen2-0.5B-Instruct/merges.txt
max_seq_len: null

checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Qwen2-0.5B-Instruct
checkpoint_files: [
model.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Qwen2-0.5B-Instruct-kd
model_type: QWEN2

teacher_checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Qwen2-1.5B-Instruct-lora-finetune
checkpoint_files: [
hf_model_0001_0.pt
]
recipe_checkpoint: null
output_dir: /tmp/Qwen2-1.5B-Instruct-lora-finetune
model_type: QWEN2

resume_from_checkpoint: False

# Dataset and Sampler
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
seed: null
shuffle: True
batch_size: 8

# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
weight_decay: 0.01
lr: 3e-4
lr_scheduler:
_component_: torchtune.modules.get_cosine_schedule_with_warmup
num_warmup_steps: 100

loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss

kd_loss:
_component_: torchtune.modules.loss.ForwardKLWithChunkedOutputLoss
kd_ratio: 0.5

# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 2

# Logging
output_dir: /tmp/qwen_kd
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: 1
log_peak_memory_stats: False

# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: False

# Show case the usage of pytorch profiler
# Set enabled to False as it's only needed for debugging training
profiler:
_component_: torchtune.training.setup_torch_profiler

enabled: False

#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs

#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True

#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False

# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 5
active_steps: 2
num_cycles: 1
Loading

0 comments on commit 09c2619

Please sign in to comment.