Skip to content
/ SDGym Public
forked from sdv-dev/SDGym

Benchmarking synthetic data generation methods.

License

Notifications You must be signed in to change notification settings

fealho/SDGym

 
 

Repository files navigation

DAI-Lab An Open Source Project from the Data to AI Lab, at MIT

Development Status Travis PyPi Shield Downloads

Benchmarking framework for Synthetic Data Generators

Overview

Synthetic Data Gym (SDGym) is a framework to benchmark the performance of synthetic data generators based on SDV and SDMetrics.

SDGym is a part of the The Synthetic Data Vault project.

What is a Synthetic Data Generator?

A Synthetic Data Generator is a Python function (or method) that takes as input some data, which we call the real data, learns a model from it, and outputs new synthetic data that has the same structure and similar mathematical properties as the real one.

Please refer to the synthesizers documentation for instructions about how to implement your own Synthetic Data Generator and integrate with SDGym. You can also read about how to use the ones already included in SDGym and see how to run them.

Benchmark datasets

SDGym evaluates the performance of Synthetic Data Generators using single table, multi table and timeseries datasets stored as CSV files alongside an SDV Metadata JSON file.

Further details about the list of available datasets and how to add your own datasets to the collection can be found in the datasets documentation.

Install

SDGym can be installed using the following commands:

Using pip:

pip install sdgym

Using conda:

conda install -c sdv-dev -c conda-forge sdgym

For more installation options please visit the SDGym installation Guide

Usage

Benchmarking your own Synthesizer

SDGym evaluates Synthetic Data Generators, which are Python functions (or classes) that take as input some data, which we call the real data, learn a model from it, and output new synthetic data that has the same structure and similar mathematical properties as the real one.

As an example, let use define a synthesizer function that applies the GaussianCopula model from SDV with gaussian distribution.

import numpy as np
from sdv.tabular import GaussianCopula


def gaussian_copula(real_data, metadata):
    gc = GaussianCopula(default_distribution='gaussian')
    table_name = metadata.get_tables()[0]
    gc.fit(real_data[table_name])
    return {table_name: gc.sample()}
ℹ️ You can learn how to create your own synthesizer function here.

We can now try to evaluate this function on the asia and alarm datasets:

import sdgym

scores = sdgym.run(synthesizers=gaussian_copula, datasets=['asia', 'alarm'])
ℹ️ You can learn about different arguments for sdgym.run function here.

The output of the sdgym.run function will be a pd.DataFrame containing the results obtained by your synthesizer on each dataset.

synthesizer dataset modality metric score metric_time model_time
gaussian_copula asia single-table BNLogLikelihood -2.842690 2.762427 0.752364
gaussian_copula alarm single-table BNLogLikelihood -20.223178 7.009401 3.173832

Benchmarking the SDGym Synthesizers

If you want to run the SDGym benchmark on the SDGym Synthesizers you can directly pass the corresponding class, or a list of classes, to the sdgym.run function.

For example, if you want to run the complete benchmark suite to evaluate all the existing synthesizers you can run (:warning: this will take a lot of time to run!):

from sdgym.synthesizers import (
    CLBN, CopulaGAN, CTGAN, HMA1, Identity, Independent,
    MedGAN, PAR, PrivBN, SDV, TableGAN, TVAE,
    Uniform, VEEGAN)

all_synthesizers = [
    CLBN,
    CTGAN,
    CopulaGAN,
    HMA1,
    Identity,
    Independent,
    MedGAN,
    PAR,
    PrivBN,
    SDV,
    TVAE,
    TableGAN,
    Uniform,
    VEEGAN,
]
scores = sdgym.run(synthesizers=all_synthesizers)

For further details about all the arguments and possibilities that the benchmark function offers please refer to the benchmark documentation

Additional References

  • Datasets used in SDGym are detailed here.
  • How to write a synthesizer is detailed here.
  • How to use benchmark function is detailed here.
  • Detailed leaderboard results for all the releases are available here.

The Synthetic Data Vault

This repository is part of The Synthetic Data Vault Project

About

Benchmarking synthetic data generation methods.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 71.2%
  • C++ 22.5%
  • Makefile 4.7%
  • Shell 1.6%