Skip to content

Analyzing Multicollineaerity with a little simulation

Notifications You must be signed in to change notification settings

favstats/multicol_sim

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

How does Collinearity Influence Linear Regressions?

Fabio Votta 29 August 2018

Load Packages

Simulation Function

generate_multi <- function(n, cor_seq){
  set.seed(2017)
  x <- runif(n, 1, 10)
  models <- list()
  std.models <- list()
  for (jj in seq_along(cor_seq)) {
    ## generate correlated variable x2
    dat <- data.frame(corgen(x = x, r = cor_seq[jj],  epsilon = 0))
    colnames(dat) <- c("x1", "x2")
    ## generate y variable
    dat$y <- 0.5 * dat$x1 + 0.5 * dat$x2 + rnorm(n, sd = 10)
    ## modelling and tidy dataframe
    models[[jj]] <- tidy(lm(y ~ x1 + x2, data = dat))
    ## get standardized betas
    std.models[[jj]] <- data.frame(lm.beta::coef.lm.beta((lm.beta::lm.beta(lm(y ~ x1 + x2, data = dat)))))
    colnames(std.models[[jj]]) <- c("std.estimate")  
    ## bind it together
    models[[jj]] <- std.models[[jj]] %>% 
                      bind_cols(models[[jj]]) 
    models[[jj]]$cors <- cor_seq[jj]
  }
  sim_dat <- bind_rows(models)
  sim_dat$col <- n
  return(sim_dat)
}

draw.data <- function(cor_seq = NULL, step_seq = NULL){
    sim.list <- list()
    for(jj in seq_along(step_seq)) {
      sim.list[[jj]] <- generate_multi(n = step_seq[jj], cor_seq)
      sim.list[[jj]]$n <- step_seq[jj]
      
      cat(paste0("Batch: ", jj, "\t"))
      
    } 
    sim_data <- bind_rows(sim.list)
    return(sim_data)
}

Simulate Data

sim_data <- draw.data(cor_seq = seq(0,.99,0.01), step_seq = seq(50, 10000, by = 50))

if(!dir.exists("data")) dir.create("data")

save(sim_data, file = "data/sim_data.Rdata")

Visualizing the Influence of Collinearity

load("data/sim_data.Rdata")

Standard Errors

get_smooths <- function(smooth_dat, n_val, y) {
  smooth_dat <- filter(smooth_dat, n == n_val & term == "x1")
  # y <- enquo(y)
  fm <- paste0(y," ~ cors")
  smooth_vals <- predict(loess(fm, smooth_dat), smooth_dat$cors) 
  
  smooth_dat %>% 
  mutate(smooth = smooth_vals) %>% 
  group_by(n) %>% 
  summarise(max_smooth = max(smooth),
            min_smooth = min(smooth)
            )
}

smooth_dat <- c(50, 100, 150, 200, 10000) %>% 
  map_df(~get_smooths(sim_data, n_val = .x, y = "std.error")) %>% 
  mutate(n_lab = ifelse(n == 50, "Sample Size: 50", n))

sim_data %>% 
  filter(term == "x1") %>% 
  ggplot(aes(cors, std.error, colour = n, group = n)) + 
  geom_smooth(method = "loess", se = F, size = 1, alpha = 0.5) +
  xlab(expression("Pearson's"~r~correlation~between~x[1]~and~x[2])) + 
  ylab(expression(x[1]~Standard~Error)) + 
  theme_hc() + 
  scale_color_viridis("Sample Size", direction = -1,
       # limits = seq(1000, 10000, 3000),
       breaks = seq(1000, 10000, 3000),
       labels = seq(1000, 10000, 3000)) +
  ggtitle("Sample Size and Collinearity Influence on Standard Error") +
  geom_point(data = smooth_dat, aes(x = .99, y = max_smooth)) +
  geom_text_repel(data = smooth_dat, aes(x = .99, y = max_smooth, label = n_lab), 
                  nudge_y = 0.07, nudge_x = 0.03) +
  guides(colour = guide_colourbar(barwidth = 20, label.position = "bottom"))

ggsave(filename = "images/std_static.png", width = 10, height = 7)

T-Statistic

sim_data  %>% 
     filter(term == "x1") %>% 
     ggplot(aes(cors, statistic, colour = n, group = n)) + 
     geom_smooth(method = "loess", se = F, size = 1, alpha = 0.5) +
  xlab(expression("Pearson's"~r~correlation~between~x[1]~and~x[2])) + 
  ylab(expression(x[1]~t-Statistic)) + 
  theme_hc() + 
  scale_color_viridis("Sample Size", direction = -1,
       # limits = seq(1000, 10000, 3000),
       breaks = seq(1000, 10000, 3000),
       labels = seq(1000, 10000, 3000)) +
  geom_hline(yintercept = 1.96, linetype = "dashed", alpha = 0.9) +
  annotate(geom = "text", x = 0, y = 2.3, label = "t = 1.96") +
  ggtitle("Sample Size and Collinearity Influence on t-Statistic") +
  guides(colour = guide_colourbar(barwidth = 20, label.position = "bottom"))

ggsave(filename = "images/t_static.png", width = 10, height = 7)

P-Values

sim_data  %>% 
     filter(term=="x1") %>% 
     ggplot(aes(cors, p.value, colour = n, group = n)) + 
     geom_smooth(method = "loess", se = F, size = 1, alpha = 0.5) +
  xlab(expression("Pearson's"~r~correlation~between~x[1]~and~x[2])) + 
  ylab(expression(x[1]~p-value)) + 
  theme_hc() + 
  scale_color_viridis("Sample Size", direction = -1,
       # limits = seq(1000, 10000, 3000),
       breaks = seq(1000, 10000, 3000),
       labels = seq(1000, 10000, 3000)) +
  geom_hline(yintercept = 0.05, linetype = "dashed", alpha = 0.9) +
  annotate(geom = "text", x = 0, y = 0.08, label = "p = 0.05") +
  ggtitle("Sample Size and Collinearity Influence on p-values") +
  guides(colour = guide_colourbar(barwidth = 20, label.position = "bottom"))

ggsave(filename = "images/p_static.png", width = 10, height = 7)

B-Coefficients

sim_data  %>%
    filter(term=="x1") %>%
    filter(n>200) %>%
    ggplot(aes(cors, estimate, colour = n, group = n)) +
    geom_hline(yintercept = 0.5, linetype = "dashed", alpha = 0.9) +
    #geom_smooth(method = "loess", se = F, size = 1, alpha = 0.5) +#
    geom_line(alpha = 0.5) +
  xlab(expression("Pearson's"~r~correlation~between~x[1]~and~x[2])) + 
  ylab(expression(x[1]~b-coefficient)) + 
  theme_hc() + 
  scale_color_viridis("Sample Size", direction = -1,
       # limits = seq(1000, 10000, 3000),
       breaks = seq(1000, 10000, 3000),
       labels = seq(1000, 10000, 3000)) +
  annotate(geom = "text", x = 0, y = 0.08, label = "b = 0.5") +
  ggtitle("Sample Size and Collinearity Influence on b-coefficients") +
  guides(colour = guide_colourbar(barwidth = 20, label.position = "bottom"))

ggsave(filename = "images/b_static.png", width = 10, height = 7)
Animation
library(gganimate)

sim_data_sub <- sim_data  %>%
    filter(term == "x1") %>%
    filter(n > 200) %>% 
    filter(n %in% c(300, 1000, 10000)) %>% 
  mutate(estimate_lab = round(estimate, 2) %>% as.character) %>% 
  mutate(n = as.factor(n))


 anim1 <-  sim_data_sub  %>%
    # filter(term == "x1") %>%
    # filter(n > 200) %>%
    ggplot(aes(cors, estimate, colour = n, group = n)) +
    geom_hline(yintercept = 0.5, linetype = "dashed", alpha = 0.9) +
  geom_line() +
  geom_segment(aes(xend = 1, yend = estimate), linetype = 2, colour = 'grey') +
  geom_point(size = 2) +
  geom_text(aes(x = 1, label = n), hjust = 0, size = 4, fontface = "bold") +
  geom_text(aes(x = 0.15, y = 1.8, label = paste0("Correlation: ", cors)), 
                hjust = 1, size = 5, color = "black") +
  geom_text(aes(label = estimate_lab), hjust = 0, size = 3, fontface = "bold", nudge_y = 0.1) +
  xlab("Pearson's r correlation between x1 and x2") +
  ylab("x1 b-coefficient") + 
  coord_cartesian(clip = 'off') + 
  theme_hc() + 
  scale_color_viridis("Sample Size", 
                      direction = -1, 
                      discrete = T,
                      begin = 0.3,
       # limits = seq(1000, 10000, 3000),
       breaks = seq(1000, 10000, 3000),
       labels = seq(1000, 10000, 3000)) +
  guides(colour = F) +
  theme(title = element_text(size = 15, face = "bold"), 
        axis.text.x = element_text(size = 14, face = "bold"), 
        axis.text.y = element_text(size = 10, face = "italic")) +
  ggtitle("Sample Size and Collinearity Influence on b-coefficients (Sample Sizes: 300, 1000 and 10.000)") +
  # guides(colour = guide_colourbar(barwidth = 20, label.position = "bottom")) +
  # Here comes the gganimate code
  transition_reveal(n, cors) 


anim1 %>% animate(
  nframes = 500, fps = 15, width = 1000, height = 600, detail = 3
)

anim_save("images/b_anim.gif")

Standardized
sim_data  %>% 
     filter(term=="x1") %>% 
     filter(n>200) %>%
     ggplot(aes(cors, std.estimate, colour = n, group = n)) + 
     #geom_smooth(method = "loess", se = F, size = 1, alpha = 0.5) +
    geom_line(alpha = 0.5) +
  xlab(expression("Pearson's"~r~correlation~between~x[1]~and~x[2])) + 
  ylab(expression(x[1]~b-coefficient)) + 
  theme_hc() + 
  scale_color_viridis("Sample Size", direction = -1,
       # limits = seq(1000, 10000, 3000),
       breaks = seq(1000, 10000, 3000),
       labels = seq(1000, 10000, 3000)) +
  ggtitle("Sample Size and Collinearity Influence on standardized b-coefficients") +
  guides(colour = guide_colourbar(barwidth = 20, label.position = "bottom"))

ggsave(filename = "images/b_standardized_static.png", width = 10, height = 7)
sessionInfo()
## R version 3.5.0 (2018-04-23)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 17134)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=German_Germany.1252  LC_CTYPE=German_Germany.1252   
## [3] LC_MONETARY=German_Germany.1252 LC_NUMERIC=C                   
## [5] LC_TIME=German_Germany.1252    
## 
## attached base packages:
## [1] grid      stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] bindrcpp_0.2.2     ggrepel_0.8.0      lm.beta_1.5-1     
##  [4] gridExtra_2.3      viridis_0.5.1      viridisLite_0.3.0 
##  [7] ecodist_2.0.1      forcats_0.3.0      stringr_1.3.0     
## [10] dplyr_0.7.5        readr_1.1.1        tidyr_0.8.1       
## [13] tibble_1.4.2       ggplot2_3.0.0.9000 tidyverse_1.2.1   
## [16] ggthemes_4.0.0     broom_0.4.4        purrr_0.2.4       
## [19] arm_1.10-1         lme4_1.1-17        Matrix_1.2-14     
## [22] MASS_7.3-49       
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_0.12.18     lubridate_1.7.4  lattice_0.20-35  assertthat_0.2.0
##  [5] rprojroot_1.3-2  digest_0.6.15    psych_1.8.3.3    R6_2.2.2        
##  [9] cellranger_1.1.0 plyr_1.8.4       backports_1.1.2  evaluate_0.10.1 
## [13] coda_0.19-1      httr_1.3.1       pillar_1.2.1     rlang_0.2.1     
## [17] lazyeval_0.2.1   readxl_1.1.0     minqa_1.2.4      rstudioapi_0.7  
## [21] nloptr_1.0.4     rmarkdown_1.9    labeling_0.3     splines_3.5.0   
## [25] foreign_0.8-70   munsell_0.4.3    compiler_3.5.0   modelr_0.1.1    
## [29] pkgconfig_2.0.1  mnormt_1.5-5     htmltools_0.3.6  tidyselect_0.2.4
## [33] crayon_1.3.4     withr_2.1.2      nlme_3.1-137     jsonlite_1.5    
## [37] gtable_0.2.0     pacman_0.4.6     magrittr_1.5     scales_0.5.0    
## [41] cli_1.0.0        stringi_1.1.7    reshape2_1.4.3   xml2_1.2.0      
## [45] tools_3.5.0      glue_1.3.0       hms_0.4.2        abind_1.4-5     
## [49] parallel_3.5.0   yaml_2.1.19      colorspace_1.4-0 rvest_0.3.2     
## [53] knitr_1.20       bindr_0.1.1      haven_1.1.2

Releases

No releases published

Packages

No packages published

Languages