-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #109 from tristangdwl/demo_Neumann_combined
Add Neumann combined field demo
- Loading branch information
Showing
2 changed files
with
160 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,148 @@ | ||
%DEMO_NEUMANN_COMBINED | ||
% Solve the exterior Helmholtz scattering problem on a domain with corners | ||
% and the preconditioned combined field representation | ||
% | ||
% Demonstrates kernel interleaving | ||
% Demonstrates a mixture of straight and curved edges | ||
|
||
%% Define geometry | ||
% planewave direction | ||
kvec = [0;8]; | ||
zk = norm(kvec); | ||
|
||
% make vertices | ||
narms = 5; | ||
rots = exp(1i*2*pi*(1:narms)/narms); | ||
verts = zeros(2,2*narms); | ||
radi = 1; | ||
rado = 5; | ||
for i = 1:narms | ||
verts(:,2*i-1) = radi*[real(rots(i));imag(rots(i))]; | ||
verts(:,2*i ) = rado*[real(rots(i));imag(rots(i))]; | ||
end | ||
nverts = size(verts,2); | ||
edge2verts = [1:nverts;circshift(1:nverts,-1)]; | ||
|
||
% curve parameters | ||
amp = -0.5; | ||
frq = 5; | ||
|
||
% define curve for each edge | ||
fchnks = {}; | ||
for i = 1:narms | ||
% odd edges are straight | ||
fchnks{2*i-1} = []; | ||
% even edges are curved | ||
fchnks{2*i } = @(t) sinearc(t,amp,frq); | ||
end | ||
|
||
cparams = []; | ||
cparams.maxchunklen = min(4.0/zk,.5); | ||
[cgrph] = chunkgraph(verts,edge2verts,fchnks,cparams); | ||
|
||
|
||
% plot | ||
figure(1);clf | ||
plot(cgrph) | ||
% hold on | ||
% quiver(cgrph) | ||
% hold off | ||
axis equal | ||
|
||
%% Define system | ||
|
||
% define kernels | ||
Sk = kernel('helmholtz', 's', zk); | ||
Skp = kernel('helmholtz', 'sprime', zk); | ||
Dk = kernel('helmholtz', 'd', zk); | ||
|
||
% combined field uses modified-Helmholtz kernels | ||
Sik = kernel('helmholtz', 's', 1i*zk); | ||
Sikp = kernel('helmholtz', 'sprime', 1i*zk); | ||
Dkdiff = kernel('helmdiff', 'dprime', [zk 1i*zk]); | ||
|
||
Z = kernel.zeros(); | ||
|
||
alpha = 1; | ||
c1 = -1/(0.5 + 1i*alpha*0.25); | ||
c2 = -1i*alpha/(0.5 + 1i*alpha*0.25); | ||
c3 = -1; | ||
|
||
% define a matrix valued kernel, which corresponds to unpacking the | ||
% composition of operators | ||
K = [ c1*Skp c2*Dkdiff c2*Sikp ; | ||
c3*Sik Z Z ; | ||
c3*Sikp Z Z ]; | ||
K = kernel(K); | ||
Keval = c1*kernel([Sk 1i*alpha*Dk Z]); | ||
|
||
npts = cgrph.npt; | ||
nsys = K.opdims(1)*npts; | ||
start = tic; | ||
A = chunkermat(cgrph, K) + eye(nsys); | ||
tmat = toc(start) | ||
|
||
%% solve system | ||
% Set up boundary data | ||
sources = [4;1]; | ||
strengths = 1; | ||
|
||
rhs = zeros(nsys,1); | ||
% get Neumann boundary data | ||
rhs_n = -sum(kvec(:).*cgrph.n(:,:),1).*planewave(kvec(:),cgrph.r(:,:)); | ||
|
||
% only first row of K is physical | ||
rhs(1:K.opdims(1):end) = rhs_n(:); | ||
|
||
% solve | ||
start = tic; | ||
sol = gmres(A, rhs, [], 1e-13, 200); | ||
tsolve = toc(start) | ||
|
||
%% compute field | ||
|
||
L = 2*rado; | ||
x1 = linspace(-L,L,300); | ||
[xx,yy] = meshgrid(x1,x1); | ||
targs = [xx(:).'; yy(:).']; | ||
ntargs = size(targs,2); | ||
|
||
% identify points in computational domain | ||
in = chunkerinterior(cgrph,{x1,x1}); | ||
out = ~in; | ||
|
||
% get incoming solution | ||
uin = nan(size(xx)); | ||
uin(out) = planewave(kvec(:),targs(:,out)); | ||
|
||
% get solution | ||
opts = []; | ||
opts.forcesmooth = false; | ||
uscat = nan(size(xx)); | ||
uscat(out) = chunkerkerneval(cgrph,Keval,sol,targs(:,out),opts); | ||
|
||
utot = uin + uscat; | ||
|
||
%% make plots | ||
umax = max(abs(utot(:))); | ||
figure(2);clf | ||
h = pcolor(xx,yy,imag(utot)); set(h,'EdgeColor','none'); colorbar | ||
colormap(redblue); clim([-umax,umax]); | ||
hold on | ||
plot(cgrph,'k') | ||
axis equal | ||
title('$u^{\textrm{tot}}$','Interpreter','latex','FontSize',12) | ||
|
||
|
||
function [r,d,d2] = sinearc(t,amp,frq) | ||
xs = t; | ||
ys = amp*sin(frq*t); | ||
xp = ones(size(t)); | ||
yp = amp*frq*cos(frq*t); | ||
xpp = zeros(size(t)); | ||
ypp = -frq*frq*amp*sin(t); | ||
|
||
r = [(xs(:)).'; (ys(:)).']; | ||
d = [(xp(:)).'; (yp(:)).']; | ||
d2 = [(xpp(:)).'; (ypp(:)).']; | ||
end |