Skip to content
/ vsepp Public

PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

License

Notifications You must be signed in to change notification settings

fartashf/vsepp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Improving Visual-Semantic Embeddings with Hard Negatives

Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings with Hard Negatives , F. Faghri, D. J. Fleet, J. R. Kiros, S. Fidler, Proceedings of the British Machine Vision Conference (BMVC), 2018. (BMVC Spotlight)

Dependencies

We recommended to use Anaconda for the following packages.

import nltk
nltk.download()
> d punkt

Download data

Download the dataset files and pre-trained models. We use splits produced by Andrej Karpathy. The precomputed image features are from here and here. To use full image encoders, download the images from their original sources here, here and here.

wget http://www.cs.toronto.edu/~faghri/vsepp/vocab.tar
wget http://www.cs.toronto.edu/~faghri/vsepp/data.tar
wget http://www.cs.toronto.edu/~faghri/vsepp/runs.tar

We refer to the path of extracted files for data.tar as $DATA_PATH and files for models.tar as $RUN_PATH. Extract vocab.tar to ./vocab directory.

Update: The vocabulary was originally built using all sets (including test set captions). Please see issue #29 for details. Please consider not using test set captions if building up on this project.

Evaluate pre-trained models

python -c "\
from vocab import Vocabulary
import evaluation
evaluation.evalrank('$RUN_PATH/coco_vse++/model_best.pth.tar', data_path='$DATA_PATH', split='test')"

To do cross-validation on MSCOCO, pass fold5=True with a model trained using --data_name coco.

Training new models

Run train.py:

python train.py --data_path "$DATA_PATH" --data_name coco_precomp --logger_name 
runs/coco_vse++ --max_violation

Arguments used to train pre-trained models:

Method Arguments
VSE0 --no_imgnorm
VSE++ --max_violation
Order0 --measure order --use_abs --margin .05 --learning_rate .001
Order++ --measure order --max_violation

Reference

If you found this code useful, please cite the following paper:

@article{faghri2018vse++,
  title={VSE++: Improving Visual-Semantic Embeddings with Hard Negatives},
  author={Faghri, Fartash and Fleet, David J and Kiros, Jamie Ryan and Fidler, Sanja},
  booktitle = {Proceedings of the British Machine Vision Conference ({BMVC})},
  url = {https://github.com/fartashf/vsepp},
  year={2018}
}

License

Apache License 2.0

About

PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages