Skip to content

OpenVINO AI Plugins for Audacity on macOS M Generation Arm64

License

Notifications You must be signed in to change notification settings

eukarpov/openvino-plugins-ai-audacity

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OpenVINO™ AI Plugins for Audacity* 🤘

License: GPL v3

A set of AI-enabled effects, generators, and analyzers for Audacity®. These AI features run 100% locally on your PC 💻 -- no internet connection necessary! OpenVINO™ is used to run AI models on supported accelerators found on the user's system such as CPU, GPU, and NPU.

  • Music Separation🎵 -- Separate a mono or stereo track into individual stems -- Drums, Bass, Vocals, & Other Instruments.
  • Music Style Remix💿 -- Uses Stable Diffusion to alter a mono or stereo track using a text prompt.
  • Noise Suppression🧹 -- Removes background noise from an audio sample.
  • Music Generation🎶 -- Uses Stable Diffusion to generate snippets of music from a text prompt.
  • Whisper Transcription🎤 -- Uses whisper.cpp to generate a label track containing the transcription or translation for a given selection of spoken audio or vocals.

Installation 💾

Go here to find installation packages & instructions for the latest Windows release.

Build Instructions 🔨

Help, Feedback, & Bug Reports 🙋‍♂️

We welcome you to submit an issue here for

  • Questions
  • Bug Reports
  • Feature Requests
  • Feedback of any kind -- how can we improve this project?

Contribution 🤝

Your contributions are welcome and valued, no matter how big or small. Feel free to submit a pull-request!

Acknowledgements & Citations 🙏

  • Audacity® development team & Muse Group-- Thank you for your support!
  • Audacity® GitHub -- https://github.com/audacity/audacity
  • Whisper transcription & translation analyzer uses whisper.cpp (with OpenVINO™ backend): https://github.com/ggerganov/whisper.cpp
  • Music Generation & Music Style Remix use Riffusion's UNet model, Riffusion pipelines that were ported to C++ from this project: https://github.com/riffusion/riffusion
  • Music Separation effect uses Meta's Demucs v4 model (https://github.com/facebookresearch/demucs), which has been ported to work with OpenVINO™
  • Noise Suppression:
    • noise-suppression-denseunet-ll: from OpenVINO™'s Open Model Zoo: https://github.com/openvinotoolkit/open_model_zoo
    • DeepFilterNet2 & DeepFilterNet3:
      • Ported the models & pipeline from here: https://github.com/Rikorose/DeepFilterNet
      • We also made use of @grazder's fork / branch (https://github.com/grazder/DeepFilterNet/tree/torchDF-changes) to better understand the Rust implementation, and so we also based some of our C++ implementation on torch_df_offline.py found here.
      • Citations:
        @inproceedings{schroeter2022deepfilternet2,
        title = {{DeepFilterNet2}: Towards Real-Time Speech Enhancement on Embedded Devices for Full-Band Audio},
        author = {Schröter, Hendrik and Escalante-B., Alberto N. and Rosenkranz, Tobias and Maier, Andreas},
        booktitle={17th International Workshop on Acoustic Signal Enhancement (IWAENC 2022)},
        year = {2022},
        }
          
        @inproceedings{schroeter2023deepfilternet3,
        title = {{DeepFilterNet}: Perceptually Motivated Real-Time Speech Enhancement},
        author = {Schröter, Hendrik and Rosenkranz, Tobias and Escalante-B., Alberto N. and Maier, Andreas},
        booktitle={INTERSPEECH},
        year = {2023},
        }

Disclaimer ⚠️

Stable Diffusion & Riffusion's data model is governed by the Creative ML Open Rail M license, which is not an open source license. https://github.com/CompVis/stable-diffusion. Users are responsible for their own assessment whether their proposed use of the project code and model would be governed by and permissible under this license.

About

OpenVINO AI Plugins for Audacity on macOS M Generation Arm64

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 99.1%
  • CMake 0.9%