Skip to content

Commit

Permalink
Fix Mathlib bump error
Browse files Browse the repository at this point in the history
  • Loading branch information
ericluap committed Nov 25, 2024
1 parent 76baa22 commit d30b9bb
Show file tree
Hide file tree
Showing 3 changed files with 7 additions and 4 deletions.
1 change: 1 addition & 0 deletions OrderedSemigroups.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2,3 +2,4 @@
-- Import modules here that should be built as part of the library.
import «OrderedSemigroups».Archimedean
import «OrderedSemigroups».MonoidToGroup
import OrderedSemigroups.OrderedGroup.Approximate
1 change: 0 additions & 1 deletion OrderedSemigroups/MonoidToGroup.lean
Original file line number Diff line number Diff line change
Expand Up @@ -147,7 +147,6 @@ def over_one_submonoid : Submonoid (with_division α) where
theorem over_one_in_subset (a : α) : ⟦(a, 1)⟧ ∈ over_one_subset := by
simp [over_one_submonoid, over_one_subset]
use a
simp [HasEquiv.Equiv, pair_setoid]

theorem inj_over_one (a b : α) : ⟦(a, 1)⟧ = (⟦(b, 1)⟧ : with_division α) → a = b := by
intro eq
Expand Down
9 changes: 6 additions & 3 deletions OrderedSemigroups/OrderedGroup/Approximate.lean
Original file line number Diff line number Diff line change
Expand Up @@ -81,9 +81,9 @@ theorem approximate (g : α) (p : ℕ):
simp at z_max
trivial

noncomputable def q (g : α) (p : ℕ): ℤ := (approximate f_pos g p).choose
noncomputable def q (g : α) (p : ℕ) : ℤ := (approximate f_pos g p).choose

theorem q_spec (g : α) (p : ℕ):
theorem q_spec (g : α) (p : ℕ) :
f^(q f_pos g p) ≤ g^p ∧ g^p < f^((q f_pos g p)+1) := by
have := (approximate f_pos g p).choose_spec
simp at this
Expand Down Expand Up @@ -155,7 +155,10 @@ theorem q_convergence (g : α) :
noncomputable def φ' : α → ℝ :=
fun g ↦ (q_convergence f_pos g).choose

theorem φ'_hom (a b : α) : φ' f_pos (a * b) = φ' f_pos a + φ' f_pos b := by sorry
theorem φ'_spec (g : α) : Filter.Tendsto (fun p ↦ ((q f_pos g p) : ℝ)/(p : ℝ)) Filter.atTop (nhds (φ' f_pos g)) := by
exact (q_convergence f_pos g).choose_spec

theorem φ'_hom (a b : α) : φ' f_pos (a * b) = φ' f_pos a + φ' f_pos b := sorry

noncomputable def φ : α →* ℝ where
toFun := φ' f_pos
Expand Down

0 comments on commit d30b9bb

Please sign in to comment.