Skip to content

Commit

Permalink
Fix exponents and bold definitions
Browse files Browse the repository at this point in the history
  • Loading branch information
ericluap committed Aug 22, 2024
1 parent 454812b commit 231aa48
Show file tree
Hide file tree
Showing 3 changed files with 32 additions and 32 deletions.
26 changes: 13 additions & 13 deletions blueprint/src/content.tex
Original file line number Diff line number Diff line change
Expand Up @@ -99,13 +99,13 @@ \section{Content}
\begin{lemma}\label{split_first_and_last}\lean{split_first_and_last_factor_of_product}\leanok
Let $a$ and $b$ be elements of a semigroup $S$.

For all $n > 1$, $(a*b)^n = a * (b+a)^(n-1) * b$.
For all $n > 1$, $(a*b)^n = a * (b+a)^{n-1} * b$.
\end{lemma}
\begin{proof}
Let $n=2$. Then $(a+b)^2 = a * (b*a)^(2-1) * b$.
Let $n=2$. Then $(a+b)^2 = a * (b*a)^{2-1} * b$.

Assume that the statement holds for $n$.
Then we have that $(a*b)^(n+1) = a * b * (a*b)^n = a * b * a * (b*a)^(n-1) * b = a * (b*a)^n * b$.
Then we have that $(a*b)^{n+1} = a * b * (a*b)^n = a * b * a * (b*a)^{n-1} * b = a * (b*a)^n * b$.
\end{proof}

\begin{lemma}\label{thm:comm_ineq}\lean{comm_factor_le, comm_swap_le, comm_dist_le}\leanok
Expand All @@ -120,47 +120,47 @@ \section{Content}
Assume that the statement holds for $n$.
Then we have that
\begin{align}
a^(n+1) + b^(n+1) &= a * a^n * b^n * b \\
a^{n+1} + b^{n+1} &= a * a^n * b^n * b \\
\text{by the induction hypothesis}\\
&< a * (a * b)^n * b \\
\text{since $a*b < b*a$}\\
&< a * (b * a)^n * b \\
\text{by the previous lemma}\\
&= (a * b)^(n+1) \\
&< (b * a)^(n+1) \\
&= (a * b)^{n+1} \\
&< (b * a)^{n+1} \\
\text{by the previous lemma}\\
&= b * (a * b)^n * a \\
&< b * (b * a)^n * a \\
\text{by the induction hypothesis}\\
&< b * b^n * a^n * a \\
&= b^(n+1) * a^(n+1)
&= b^{n+1} * a^{n+1}
\end{align}
\end{proof}

\begin{definition}\label{def:arch_wrt}\lean{is_archimedean_wrt}\leanok
\uses{def:positive, def:negative}
Let $a$ and $b$ be elements of an ordered semigroup $S$ that are not one.

Then $a$ is said to be Archimedean with respect to $b$
Then $a$ is said to be \textbf{Archimedean with respect to} $b$
if there exists an $N\in \mathbb{N}^+$ such that for $n > N$,
the inequality $b < a^n$ holds if $b$ is positive,
and the inequality $b > a^n$ holds if $b$ is negative.
\end{definition}

\begin{definition}\label{def:arch}\lean{is_archimedean}\leanok
\uses{def:one, def:arch_wrt}
An ordered semigroup is Archimedean if any two of its elements
An ordered semigroup is \textbf{Archimedean} if any two of its elements
of the same sign are mutually Archimedean.
\end{definition}

\begin{definition}\label{def:anomalous_pair}\lean{anomalous_pair}\leanok
Let $a$ and $b$ be elements of an ordered semigroup $S$.

Then $a$ and $b$ are said to form an anomalous pair
Then $a$ and $b$ are said to form an \textbf{anomalous pair}
if for all $n\in \mathbb{N}^+$, one of the following holds
\begin{align}
a^n < b^n < a^(n+1) \\
a^n > b^n > a^(n+1)
a^n < b^n < a^{n+1} \\
a^n > b^n > a^{n+1}
\end{align}
\end{definition}

Expand All @@ -183,7 +183,7 @@ \section{Content}
\]
which means that, since $a^n < b$,
\[
b^n < (a*b)^n < b^(n+1)
b^n < (a*b)^n < b^{n+1}
\]
And so $b$ and $a*b$ form an anomalous pair.

Expand Down
16 changes: 8 additions & 8 deletions blueprint/web/dep_graph_document.html
Original file line number Diff line number Diff line change
Expand Up @@ -104,9 +104,9 @@ <h1 id="doc_title">Dependencies</h1>
</span>
<span class="definition_thmlabel">10</span></div>
<div class="thm_thmcontent"><p>Let \(a\) and \(b\) be elements of an ordered semigroup \(S\). </p>
<p>Then \(a\) and \(b\) are said to form an anomalous pair if for all \(n\in \mathbb {N}^+\), one of the following holds </p>
<p>Then \(a\) and \(b\) are said to form an <b class="bfseries">anomalous pair</b> if for all \(n\in \mathbb {N}^+\), one of the following holds </p>
<div class="displaymath" id="a0000000010">
\begin{align} a^n {\lt} b^n {\lt} a^(n+1) \\ a^n {\gt} b^n {\gt} a^(n+1) \end{align}
\begin{align} a^n {\lt} b^n {\lt} a^{n+1} \\ a^n {\gt} b^n {\gt} a^{n+1} \end{align}
</div>
</div>

Expand Down Expand Up @@ -137,7 +137,7 @@ <h1 id="doc_title">Dependencies</h1>
Definition
</span>
<span class="definition_thmlabel">9</span></div>
<div class="thm_thmcontent"><p> An ordered semigroup is Archimedean if any two of its elements of the same sign are mutually Archimedean. </p>
<div class="thm_thmcontent"><p> An ordered semigroup is <b class="bfseries">Archimedean</b> if any two of its elements of the same sign are mutually Archimedean. </p>
</div>

<a class="latex_link" href="index.html#def:arch">LaTeX</a>
Expand Down Expand Up @@ -168,7 +168,7 @@ <h1 id="doc_title">Dependencies</h1>
</span>
<span class="definition_thmlabel">8</span></div>
<div class="thm_thmcontent"><p> Let \(a\) and \(b\) be elements of an ordered semigroup \(S\) that are not one. </p>
<p>Then \(a\) is said to be Archimedean with respect to \(b\) if there exists an \(N\in \mathbb {N}^+\) such that for \(n {\gt} N\), the inequality \(b {\lt} a^n\) holds if \(b\) is positive, and the inequality \(b {\gt} a^n\) holds if \(b\) is negative. </p>
<p>Then \(a\) is said to be <b class="bfseries">Archimedean with respect to</b> \(b\) if there exists an \(N\in \mathbb {N}^+\) such that for \(n {\gt} N\), the inequality \(b {\lt} a^n\) holds if \(b\) is positive, and the inequality \(b {\gt} a^n\) holds if \(b\) is negative. </p>
</div>

<a class="latex_link" href="index.html#def:arch_wrt">LaTeX</a>
Expand Down Expand Up @@ -258,7 +258,7 @@ <h1 id="doc_title">Dependencies</h1>
Definition
</span>
<span class="definition_thmlabel">6</span></div>
<div class="thm_thmcontent"><p> An element \(a\) of an ordered semigroup \(S\) is <b class="bfseries">negative</b> if for all \(x\in S\), \(a*x \lt x\). </p>
<div class="thm_thmcontent"><p> An element \(a\) of an ordered semigroup \(S\) is <b class="bfseries">negative</b> if for all \(x\in S\), \(a*x {\lt} x\). </p>
</div>

<a class="latex_link" href="index.html#def:negative">LaTeX</a>
Expand Down Expand Up @@ -384,7 +384,7 @@ <h1 id="doc_title">Dependencies</h1>
Definition
</span>
<span class="definition_thmlabel">5</span></div>
<div class="thm_thmcontent"><p> An element \(a\) of an ordered semigroup \(S\) is <b class="bfseries">positive</b> if for all \(x\in S\), \(a*x \gt x\). </p>
<div class="thm_thmcontent"><p> An element \(a\) of an ordered semigroup \(S\) is <b class="bfseries">positive</b> if for all \(x\in S\), \(a*x {\gt} x\). </p>
</div>

<a class="latex_link" href="index.html#def:positive">LaTeX</a>
Expand Down Expand Up @@ -489,7 +489,7 @@ <h1 id="doc_title">Dependencies</h1>
</span>
<span class="lemma_thmlabel">1</span></div>
<div class="thm_thmcontent"><p>Let \(a\) and \(b\) be elements of a semigroup \(S\). </p>
<p>For all \(n {\gt} 1\), \((a*b)^n = a * (b+a)^(n-1) * b\). </p>
<p>For all \(n {\gt} 1\), \((a*b)^n = a * (b+a)^{n-1} * b\). </p>
</div>

<a class="latex_link" href="index.html#split_first_and_last">LaTeX</a>
Expand Down Expand Up @@ -629,7 +629,7 @@ <h1 id="doc_title">Dependencies</h1>
.width(width)
.height(height)
.fit(true)
.renderDot(`strict digraph "" { graph [bgcolor=transparent]; node [label="\N", penwidth=1.8 ]; edge [arrowhead=vee]; "thm:neg_lt_pos" [color=green, fillcolor="#A3D6FF", label=neg_lt_pos, shape=ellipse, style=filled]; "lem:right_forall" [color=green, label=right_forall, shape=ellipse]; non_arch_anomalous [color=green, fillcolor="#A3D6FF", label=non_arch_anomalous, shape=ellipse, style=filled]; "def:OrderedSemigroup" [color=green, fillcolor="#B0ECA3", label=OrderedSemigroup, shape=box, style=filled]; "def:positive" [color=green, fillcolor="#B0ECA3", label=positive, shape=box, style=filled]; "def:OrderedSemigroup" -> "def:positive" [style=dashed]; "def:OrderedCancelSemigroup" [color=green, fillcolor="#B0ECA3", label=OrderedCancelSemigroup, shape=box, style=filled]; "def:OrderedSemigroup" -> "def:OrderedCancelSemigroup" [style=dashed]; "def:LinearOrderedSemigroup" [color=green, fillcolor="#B0ECA3", label=LinearOrderedSemigroup, shape=box, style=filled]; "def:OrderedSemigroup" -> "def:LinearOrderedSemigroup" [style=dashed]; "def:negative" [color=green, fillcolor="#B0ECA3", label=negative, shape=box, style=filled]; "def:OrderedSemigroup" -> "def:negative" [style=dashed]; "def:one" [color=green, fillcolor="#B0ECA3", label=one, shape=box, style=filled]; "def:OrderedSemigroup" -> "def:one" [style=dashed]; "def:positive" -> "thm:neg_lt_pos" [style=dashed]; "def:positive" -> "lem:right_forall" [style=dashed]; "def:arch_wrt" [color=green, fillcolor="#B0ECA3", label=arch_wrt, shape=box, style=filled]; "def:positive" -> "def:arch_wrt" [style=dashed]; "thm:pos_neg_or_one" [color=green, fillcolor="#A3D6FF", label=pos_neg_or_one, shape=ellipse, style=filled]; "def:positive" -> "thm:pos_neg_or_one" [style=dashed]; "def:LinearOrderedCancelSemigroup" [color=green, fillcolor="#B0ECA3", label=LinearOrderedCancelSemigroup, shape=box, style=filled]; "def:OrderedCancelSemigroup" -> "def:LinearOrderedCancelSemigroup" [style=dashed]; "def:negative" -> "thm:neg_lt_pos" [style=dashed]; "def:negative" -> "lem:right_forall" [style=dashed]; "def:negative" -> "def:arch_wrt" [style=dashed]; "def:negative" -> "thm:pos_neg_or_one" [style=dashed]; "def:one" -> "lem:right_forall" [style=dashed]; "def:one" -> "thm:pos_neg_or_one" [style=dashed]; "def:arch" [color=green, fillcolor="#B0ECA3", label=arch, shape=box, style=filled]; "def:one" -> "def:arch" [style=dashed]; "def:arch_wrt" -> "def:arch" [style=dashed]; "def:LinearOrderedCancelSemigroup" -> "thm:pos_neg_or_one" [style=dashed]; "def:arch" -> non_arch_anomalous [style=dashed]; "def:anomalous_pair" [color=green, fillcolor="#B0ECA3", label=anomalous_pair, shape=box, style=filled]; "def:anomalous_pair" -> non_arch_anomalous [style=dashed]; split_first_and_last [color=green, fillcolor="#A3D6FF", label=split_first_and_last, shape=ellipse, style=filled]; a0000000014 [color=blue, fillcolor="#A3D6FF", label=a0000000014, shape=ellipse, style=filled]; "thm:comm_ineq" [color=green, fillcolor="#A3D6FF", label=comm_ineq, shape=ellipse, style=filled];}`)
.renderDot(`strict digraph "" { graph [bgcolor=transparent]; node [label="\N", penwidth=1.8 ]; edge [arrowhead=vee]; split_first_and_last [color=green, fillcolor="#A3D6FF", label=split_first_and_last, shape=ellipse, style=filled]; "lem:right_forall" [color=green, label=right_forall, shape=ellipse]; non_arch_anomalous [color=green, fillcolor="#A3D6FF", label=non_arch_anomalous, shape=ellipse, style=filled]; "thm:pos_neg_or_one" [color=green, fillcolor="#A3D6FF", label=pos_neg_or_one, shape=ellipse, style=filled]; "thm:comm_ineq" [color=green, fillcolor="#A3D6FF", label=comm_ineq, shape=ellipse, style=filled]; a0000000014 [color=blue, fillcolor="#A3D6FF", label=a0000000014, shape=ellipse, style=filled]; "def:OrderedSemigroup" [color=green, fillcolor="#B0ECA3", label=OrderedSemigroup, shape=box, style=filled]; "def:OrderedCancelSemigroup" [color=green, fillcolor="#B0ECA3", label=OrderedCancelSemigroup, shape=box, style=filled]; "def:OrderedSemigroup" -> "def:OrderedCancelSemigroup" [style=dashed]; "def:LinearOrderedSemigroup" [color=green, fillcolor="#B0ECA3", label=LinearOrderedSemigroup, shape=box, style=filled]; "def:OrderedSemigroup" -> "def:LinearOrderedSemigroup" [style=dashed]; "def:positive" [color=green, fillcolor="#B0ECA3", label=positive, shape=box, style=filled]; "def:OrderedSemigroup" -> "def:positive" [style=dashed]; "def:negative" [color=green, fillcolor="#B0ECA3", label=negative, shape=box, style=filled]; "def:OrderedSemigroup" -> "def:negative" [style=dashed]; "def:one" [color=green, fillcolor="#B0ECA3", label=one, shape=box, style=filled]; "def:OrderedSemigroup" -> "def:one" [style=dashed]; "def:LinearOrderedCancelSemigroup" [color=green, fillcolor="#B0ECA3", label=LinearOrderedCancelSemigroup, shape=box, style=filled]; "def:OrderedCancelSemigroup" -> "def:LinearOrderedCancelSemigroup" [style=dashed]; "def:positive" -> "lem:right_forall" [style=dashed]; "def:positive" -> "thm:pos_neg_or_one" [style=dashed]; "def:arch_wrt" [color=green, fillcolor="#B0ECA3", label=arch_wrt, shape=box, style=filled]; "def:positive" -> "def:arch_wrt" [style=dashed]; "thm:neg_lt_pos" [color=green, fillcolor="#A3D6FF", label=neg_lt_pos, shape=ellipse, style=filled]; "def:positive" -> "thm:neg_lt_pos" [style=dashed]; "def:negative" -> "lem:right_forall" [style=dashed]; "def:negative" -> "thm:pos_neg_or_one" [style=dashed]; "def:negative" -> "def:arch_wrt" [style=dashed]; "def:negative" -> "thm:neg_lt_pos" [style=dashed]; "def:one" -> "lem:right_forall" [style=dashed]; "def:one" -> "thm:pos_neg_or_one" [style=dashed]; "def:arch" [color=green, fillcolor="#B0ECA3", label=arch, shape=box, style=filled]; "def:one" -> "def:arch" [style=dashed]; "def:LinearOrderedCancelSemigroup" -> "thm:pos_neg_or_one" [style=dashed]; "def:arch_wrt" -> "def:arch" [style=dashed]; "def:arch" -> non_arch_anomalous [style=dashed]; "def:anomalous_pair" [color=green, fillcolor="#B0ECA3", label=anomalous_pair, shape=box, style=filled]; "def:anomalous_pair" -> non_arch_anomalous [style=dashed];}`)
.on("end", interactive);

latexLabelEscaper = function(label) {
Expand Down
22 changes: 11 additions & 11 deletions blueprint/web/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -335,7 +335,7 @@ <h1>Lean declarations</h1>
</div>
</div>
<div class="definition_thmcontent">
<p> An element \(a\) of an ordered semigroup \(S\) is <b class="bfseries">positive</b> if for all \(x\in S\), \(a*x \gt x\). </p>
<p> An element \(a\) of an ordered semigroup \(S\) is <b class="bfseries">positive</b> if for all \(x\in S\), \(a*x {\gt} x\). </p>

</div>
</div>
Expand Down Expand Up @@ -398,7 +398,7 @@ <h1>Lean declarations</h1>
</div>
</div>
<div class="definition_thmcontent">
<p> An element \(a\) of an ordered semigroup \(S\) is <b class="bfseries">negative</b> if for all \(x\in S\), \(a*x \lt x\). </p>
<p> An element \(a\) of an ordered semigroup \(S\) is <b class="bfseries">negative</b> if for all \(x\in S\), \(a*x {\lt} x\). </p>

</div>
</div>
Expand Down Expand Up @@ -745,7 +745,7 @@ <h1>Lean declarations</h1>
</div>
<div class="lemma_thmcontent">
<p>Let \(a\) and \(b\) be elements of a semigroup \(S\). </p>
<p>For all \(n {\gt} 1\), \((a*b)^n = a * (b+a)^(n-1) * b\). </p>
<p>For all \(n {\gt} 1\), \((a*b)^n = a * (b+a)^{n-1} * b\). </p>

</div>
</div>
Expand All @@ -757,8 +757,8 @@ <h1>Lean declarations</h1>
<span class="expand-proof"></span>
</div>
<div class="proof_content">
<p>Let \(n=2\). Then \((a+b)^2 = a * (b*a)^(2-1) * b\). </p>
<p>Assume that the statement holds for \(n\). Then we have that \((a*b)^(n+1) = a * b * (a*b)^n = a * b * a * (b*a)^(n-1) * b = a * (b*a)^n * b\). </p>
<p>Let \(n=2\). Then \((a+b)^2 = a * (b*a)^{2-1} * b\). </p>
<p>Assume that the statement holds for \(n\). Then we have that \((a*b)^{n+1} = a * b * (a*b)^n = a * b * a * (b*a)^{n-1} * b = a * (b*a)^n * b\). </p>

</div>
</div>
Expand Down Expand Up @@ -825,7 +825,7 @@ <h1>Lean declarations</h1>
<p>If \(n=1\), then we are done. </p>
<p>Assume that the statement holds for \(n\). Then we have that </p>
<div class="displaymath" id="a0000000009">
\begin{align} a^(n+1) + b^(n+1) & = a * a^n * b^n * b \\ \text{by the induction hypothesis}\\ & {\lt} a * (a * b)^n * b \\ \text{since $a*b {\lt} b*a$}\\ & {\lt} a * (b * a)^n * b \\ \text{by the previous lemma}\\ & = (a * b)^(n+1) \\ & {\lt} (b * a)^(n+1) \\ \text{by the previous lemma}\\ & = b * (a * b)^n * a \\ & {\lt} b * (b * a)^n * a \\ \text{by the induction hypothesis}\\ & {\lt} b * b^n * a^n * a \\ & = b^(n+1) * a^(n+1) \end{align}
\begin{align} a^{n+1} + b^{n+1} & = a * a^n * b^n * b \\ \text{by the induction hypothesis}\\ & {\lt} a * (a * b)^n * b \\ \text{since $a*b {\lt} b*a$}\\ & {\lt} a * (b * a)^n * b \\ \text{by the previous lemma}\\ & = (a * b)^{n+1} \\ & {\lt} (b * a)^{n+1} \\ \text{by the previous lemma}\\ & = b * (a * b)^n * a \\ & {\lt} b * (b * a)^n * a \\ \text{by the induction hypothesis}\\ & {\lt} b * b^n * a^n * a \\ & = b^{n+1} * a^{n+1} \end{align}
</div>

</div>
Expand Down Expand Up @@ -892,7 +892,7 @@ <h1>Lean declarations</h1>
</div>
<div class="definition_thmcontent">
<p> Let \(a\) and \(b\) be elements of an ordered semigroup \(S\) that are not one. </p>
<p>Then \(a\) is said to be Archimedean with respect to \(b\) if there exists an \(N\in \mathbb {N}^+\) such that for \(n {\gt} N\), the inequality \(b {\lt} a^n\) holds if \(b\) is positive, and the inequality \(b {\gt} a^n\) holds if \(b\) is negative. </p>
<p>Then \(a\) is said to be <b class="bfseries">Archimedean with respect to</b> \(b\) if there exists an \(N\in \mathbb {N}^+\) such that for \(n {\gt} N\), the inequality \(b {\lt} a^n\) holds if \(b\) is positive, and the inequality \(b {\gt} a^n\) holds if \(b\) is negative. </p>

</div>
</div>
Expand Down Expand Up @@ -957,7 +957,7 @@ <h1>Lean declarations</h1>
</div>
</div>
<div class="definition_thmcontent">
<p> An ordered semigroup is Archimedean if any two of its elements of the same sign are mutually Archimedean. </p>
<p> An ordered semigroup is <b class="bfseries">Archimedean</b> if any two of its elements of the same sign are mutually Archimedean. </p>

</div>
</div>
Expand Down Expand Up @@ -1001,9 +1001,9 @@ <h1>Lean declarations</h1>
</div>
<div class="definition_thmcontent">
<p>Let \(a\) and \(b\) be elements of an ordered semigroup \(S\). </p>
<p>Then \(a\) and \(b\) are said to form an anomalous pair if for all \(n\in \mathbb {N}^+\), one of the following holds </p>
<p>Then \(a\) and \(b\) are said to form an <b class="bfseries">anomalous pair</b> if for all \(n\in \mathbb {N}^+\), one of the following holds </p>
<div class="displaymath" id="a0000000010">
\begin{align} a^n {\lt} b^n {\lt} a^(n+1) \\ a^n {\gt} b^n {\gt} a^(n+1) \end{align}
\begin{align} a^n {\lt} b^n {\lt} a^{n+1} \\ a^n {\gt} b^n {\gt} a^{n+1} \end{align}
</div>

</div>
Expand Down Expand Up @@ -1090,7 +1090,7 @@ <h1>Lean declarations</h1>
</div>
<p> which means that, since \(a^n {\lt} b\), </p>
<div class="displaymath" id="a0000000013">
\[ b^n {\lt} (a*b)^n {\lt} b^(n+1) \]
\[ b^n {\lt} (a*b)^n {\lt} b^{n+1} \]
</div>
<p> And so \(b\) and \(a*b\) form an anomalous pair. </p>
<p>The other cases follow similarly. </p>
Expand Down

0 comments on commit 231aa48

Please sign in to comment.