Skip to content

erdeme36/Automated-Feature-Engineering

Repository files navigation

Featuretools

"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to Know about Machine Learning

Tests Documentation Status PyPI Version Anaconda Version StackOverflow PyPI Downloads


Featuretools is a python library for automated feature engineering. See the documentation for more information.

Installation

Install with pip

python -m pip install featuretools

or from the Conda-forge channel on conda:

conda install -c conda-forge featuretools

Add-ons

You can install add-ons individually or all at once by running

python -m pip install "featuretools[complete]"

Update checker - Receive automatic notifications of new Featuretools releases

python -m pip install "featuretools[update_checker]"

NLP Primitives - Use Natural Language Processing Primitives:

python -m pip install "featuretools[nlp_primitives]"

TSFresh Primitives - Use 60+ primitives from tsfresh within Featuretools

python -m pip install "featuretools[tsfresh]"

Example

Below is an example of using Deep Feature Synthesis (DFS) to perform automated feature engineering. In this example, we apply DFS to a multi-table dataset consisting of timestamped customer transactions.

>> import featuretools as ft
>> es = ft.demo.load_mock_customer(return_entityset=True)
>> es.plot()

Featuretools can automatically create a single table of features for any "target dataframe"

>> feature_matrix, features_defs = ft.dfs(entityset=es, target_dataframe_name="customers")
>> feature_matrix.head(5)
            zip_code  COUNT(transactions)  COUNT(sessions)  SUM(transactions.amount) MODE(sessions.device)  MIN(transactions.amount)  MAX(transactions.amount)  YEAR(join_date)  SKEW(transactions.amount)  DAY(join_date)                   ...                     SUM(sessions.MIN(transactions.amount))  MAX(sessions.SKEW(transactions.amount))  MAX(sessions.MIN(transactions.amount))  SUM(sessions.MEAN(transactions.amount))  STD(sessions.SUM(transactions.amount))  STD(sessions.MEAN(transactions.amount))  SKEW(sessions.MEAN(transactions.amount))  STD(sessions.MAX(transactions.amount))  NUM_UNIQUE(sessions.DAY(session_start))  MIN(sessions.SKEW(transactions.amount))
customer_id                                                                                                                                                                                                                                  ...
1              60091                  131               10                  10236.77               desktop                      5.60                    149.95             2008                   0.070041               1                   ...                                                     169.77                                 0.610052                                   41.95                               791.976505                              175.939423                                 9.299023                                 -0.377150                                5.857976                                        1                                -0.395358
2              02139                  122                8                   9118.81                mobile                      5.81                    149.15             2008                   0.028647              20                   ...                                                     114.85                                 0.492531                                   42.96                               596.243506                              230.333502                                10.925037                                  0.962350                                7.420480                                        1                                -0.470007
3              02139                   78                5                   5758.24               desktop                      6.78                    147.73             2008                   0.070814              10                   ...                                                      64.98                                 0.645728                                   21.77                               369.770121                              471.048551                                 9.819148                                 -0.244976                               12.537259                                        1                                -0.630425
4              60091                  111                8                   8205.28               desktop                      5.73                    149.56             2008                   0.087986              30                   ...                                                      83.53                                 0.516262                                   17.27                               584.673126                              322.883448                                13.065436                                 -0.548969                               12.738488                                        1                                -0.497169
5              02139                   58                4                   4571.37                tablet                      5.91                    148.17             2008                   0.085883              19                   ...                                                      73.09                                 0.830112                                   27.46                               313.448942                              198.522508                                 8.950528                                  0.098885                                5.599228                                        1                                -0.396571

[5 rows x 69 columns]

We now have a feature vector for each customer that can be used for machine learning. See the documentation on Deep Feature Synthesis for more examples.

Featuretools contains many different types of built-in primitives for creating features. If the primitive you need is not included, Featuretools also allows you to define your own custom primitives.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published