Skip to content

Commit

Permalink
add a full config with all possible entries
Browse files Browse the repository at this point in the history
  • Loading branch information
Nitnelav authored Nov 12, 2024
1 parent 2d3d9c1 commit f4d2a30
Showing 1 changed file with 200 additions and 0 deletions.
200 changes: 200 additions & 0 deletions full_config.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,200 @@
## Synthetic population pipeline for Île-de-France
## based on the synpp package

# This is the path to a directory where the pipeline can store temporary data
working_directory: cache

# This section defines which parts of the pipeline should be run
run:
- synthesis.output # To create the output population in the output_path (see below)
#- matsim.output # Uncomment, if you want to run the full simulation (you'll need Java for that)

# Here the configuraiton of the pipeline starts
config:

### Some general configuration

## Number of CPUs to use
processes: 4

### Random seeds

## global random seed for the output population
random_seed: 1234

## bpe specific random seed when impute missing coordinates for known IRIS
# bpe_random_seed: 0

### Define sampling rate for the output population
sampling_rate: 0.001

### household travel survey (HTS)

## Define whether to use ENTD or EGT as the HTS
hts: entd # entd, egt, edgt_lyon, edgt_44

## Whether to filter people going outside of the area and other filters
# filter_hts: true

## if selected, chose the source for edgt_lyon
# edgt_lyon_source: unchosen # unchosen, adisp, cerema

### Zone selection

## select regions by region_id
# regions: [11]

## select departments by department_id
# departments: []

### Output paths

## output folder
output_path: output

## output prefix, appended to file names
# output_prefix: ile_de_france_

## file formats that should be exported
# output_formats: ["csv", "gpkg"] # ["csv", "gpkg", "parquet", "geoparquet"]

### Algorithms configurations

## Use the bhepop2 package for attributing income
# income_assignation_method: bhepop2 # uniform, bhepop2

## Activate if you want to run mode choice, will assign a mode to output trips
mode_choice: true

## Statistical matching configuration

## Minimum number of observation to sample from
# matching_minimum_observations: 20

## list of attributes to use for matching
# matching_attributes: ["sex", "any_cars", "age_class", "socioprofessional_class", "departement_id"]

## Use INSEE's urban type in statistical matching
# use_urban_type: true
# urban_type_path: urban_type/UU2020_au_01-01-2023.zip
# matching_attributes: ["urban_type", "*default*"]

## Exclude entreprise without any employee (trancheEffectifsEtablissement is NA, "NN" or "00")
# exclude_no_employee: true

## source for the education locations
# education_location_source: bpe # bpe, addresses

## max iterations for the secondary location selection algorithm
# secloc_maximum_iterations: np.inf

## Buffer arround buildings to capture adresses in their vicinity
# home_address_buffer: 5.0

## How sample homes, using weights or not
# home_location_weight: housing # "uniform", "housing"

# home_location_source: addresses # "addresses", "buildings", "tiles"

## When running matsim

## performing one run of the matsim simulation or not
# run_matsim: true

## creating the far or not
# write_jar: true

### Analysis configuration

## Whether to use previously generated files or not
# analysis_from_file: false

## prefix of the files to compare to
# comparison_file_prefix: other_

### Tools configuration

## Mostly interesting if you run the simulation, or you activate the `mode_choice` option,

## Binaries paths
# git_binary: git
# osmosis_binary: osmosis
# java_binary: java
# maven_binary: mvn

## Binaries parameters
# java_memory: 14G
# maven_skip_tests: false

## eqasim-java parameters
# eqasim_version: 1.5.0
# eqasim_branch: develop
# eqasim_commit: ece4932
# eqasim_repository: https://github.com/eqasim-org/eqasim-java.git
# eqasim_path: ""

## pt2matsim parameters
# pt2matsim_version: 22.3
# pt2matsim_branch: v22.3

## Strategy to use in pt2matsim gtfs processing
# gtfs_date: dayWithMostServices
## Export the detailed geometry of the network before simplification in pt2matsim
# export_detailed_network: true

### Input paths

## Absolute root path of all input data
data_path: /path/to/my/data

# census_path: rp_2019/RP2019_INDCVI_csv.zip
# census_csv: FD_INDCVI_2019.csv

# ban_path: ban_idf

# bdtopo_path: bdtopo_idf

# bpe_path: bpe_2021/bpe21_ensemble_xy_csv.zip
# bpe_csv: bpe21_ensemble_xy.csv

# gtfs_path: gtfs_idf

# income_com_path: filosofi_2019/indic-struct-distrib-revenu-2019-COMMUNES.zip
# income_com_xlsx: FILO2019_DISP_COM.xlsx
# income_reg_path: filosofi_2019/indic-struct-distrib-revenu-2019-SUPRA.zip
# income_reg_xlsx: FILO2019_DISP_REG.xlsx
# income_year: 19

# tiles_path: tiles_2019/Filosofi2019_carreaux_200m_gpkg.zip
# tiles_file: carreaux_200m_met.gpkg

# od_pro_path: rp_2019/RP2019_MOBPRO_csv.zip
# od_sco_path: rp_2019/RP2019_MOBSCO_csv.zip
# od_pro_csv: FD_MOBPRO_2019.csv
# od_sco_csv: FD_MOBSCO_2019.csv

# ## external education locations file
# education_file: education/education_addresses.geojson

# osm_path: osm_idf
# osm_highways: "*"
# osm_railways: "*"

# siren_path: sirene/StockUniteLegale_utf8.zip
# siret_path: sirene/StockEtablissement_utf8.zip
# siret_geo_path: sirene/GeolocalisationEtablissement_Sirene_pour_etudes_statistiques_utf8.zip

# iris_path: iris_2021

# population_path: rp_2019/base-ic-evol-struct-pop-2019.zip
# population_xlsx: base-ic-evol-struct-pop-2019.xlsx
# population_year: 19

# # population projections
# projection_path: projection_2021
# projection_scenario: 00_central
# projection_year: 2030

# vehicles_method: default # fleet_sample, default
# vehicles_path: vehicles
# vehicles_year: 2021

0 comments on commit f4d2a30

Please sign in to comment.