-
Notifications
You must be signed in to change notification settings - Fork 72
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add a full config with all possible entries
- Loading branch information
Showing
1 changed file
with
200 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,200 @@ | ||
## Synthetic population pipeline for Île-de-France | ||
## based on the synpp package | ||
|
||
# This is the path to a directory where the pipeline can store temporary data | ||
working_directory: cache | ||
|
||
# This section defines which parts of the pipeline should be run | ||
run: | ||
- synthesis.output # To create the output population in the output_path (see below) | ||
#- matsim.output # Uncomment, if you want to run the full simulation (you'll need Java for that) | ||
|
||
# Here the configuraiton of the pipeline starts | ||
config: | ||
|
||
### Some general configuration | ||
|
||
## Number of CPUs to use | ||
processes: 4 | ||
|
||
### Random seeds | ||
|
||
## global random seed for the output population | ||
random_seed: 1234 | ||
|
||
## bpe specific random seed when impute missing coordinates for known IRIS | ||
# bpe_random_seed: 0 | ||
|
||
### Define sampling rate for the output population | ||
sampling_rate: 0.001 | ||
|
||
### household travel survey (HTS) | ||
|
||
## Define whether to use ENTD or EGT as the HTS | ||
hts: entd # entd, egt, edgt_lyon, edgt_44 | ||
|
||
## Whether to filter people going outside of the area and other filters | ||
# filter_hts: true | ||
|
||
## if selected, chose the source for edgt_lyon | ||
# edgt_lyon_source: unchosen # unchosen, adisp, cerema | ||
|
||
### Zone selection | ||
|
||
## select regions by region_id | ||
# regions: [11] | ||
|
||
## select departments by department_id | ||
# departments: [] | ||
|
||
### Output paths | ||
|
||
## output folder | ||
output_path: output | ||
|
||
## output prefix, appended to file names | ||
# output_prefix: ile_de_france_ | ||
|
||
## file formats that should be exported | ||
# output_formats: ["csv", "gpkg"] # ["csv", "gpkg", "parquet", "geoparquet"] | ||
|
||
### Algorithms configurations | ||
|
||
## Use the bhepop2 package for attributing income | ||
# income_assignation_method: bhepop2 # uniform, bhepop2 | ||
|
||
## Activate if you want to run mode choice, will assign a mode to output trips | ||
mode_choice: true | ||
|
||
## Statistical matching configuration | ||
|
||
## Minimum number of observation to sample from | ||
# matching_minimum_observations: 20 | ||
|
||
## list of attributes to use for matching | ||
# matching_attributes: ["sex", "any_cars", "age_class", "socioprofessional_class", "departement_id"] | ||
|
||
## Use INSEE's urban type in statistical matching | ||
# use_urban_type: true | ||
# urban_type_path: urban_type/UU2020_au_01-01-2023.zip | ||
# matching_attributes: ["urban_type", "*default*"] | ||
|
||
## Exclude entreprise without any employee (trancheEffectifsEtablissement is NA, "NN" or "00") | ||
# exclude_no_employee: true | ||
|
||
## source for the education locations | ||
# education_location_source: bpe # bpe, addresses | ||
|
||
## max iterations for the secondary location selection algorithm | ||
# secloc_maximum_iterations: np.inf | ||
|
||
## Buffer arround buildings to capture adresses in their vicinity | ||
# home_address_buffer: 5.0 | ||
|
||
## How sample homes, using weights or not | ||
# home_location_weight: housing # "uniform", "housing" | ||
|
||
# home_location_source: addresses # "addresses", "buildings", "tiles" | ||
|
||
## When running matsim | ||
|
||
## performing one run of the matsim simulation or not | ||
# run_matsim: true | ||
|
||
## creating the far or not | ||
# write_jar: true | ||
|
||
### Analysis configuration | ||
|
||
## Whether to use previously generated files or not | ||
# analysis_from_file: false | ||
|
||
## prefix of the files to compare to | ||
# comparison_file_prefix: other_ | ||
|
||
### Tools configuration | ||
|
||
## Mostly interesting if you run the simulation, or you activate the `mode_choice` option, | ||
|
||
## Binaries paths | ||
# git_binary: git | ||
# osmosis_binary: osmosis | ||
# java_binary: java | ||
# maven_binary: mvn | ||
|
||
## Binaries parameters | ||
# java_memory: 14G | ||
# maven_skip_tests: false | ||
|
||
## eqasim-java parameters | ||
# eqasim_version: 1.5.0 | ||
# eqasim_branch: develop | ||
# eqasim_commit: ece4932 | ||
# eqasim_repository: https://github.com/eqasim-org/eqasim-java.git | ||
# eqasim_path: "" | ||
|
||
## pt2matsim parameters | ||
# pt2matsim_version: 22.3 | ||
# pt2matsim_branch: v22.3 | ||
|
||
## Strategy to use in pt2matsim gtfs processing | ||
# gtfs_date: dayWithMostServices | ||
## Export the detailed geometry of the network before simplification in pt2matsim | ||
# export_detailed_network: true | ||
|
||
### Input paths | ||
|
||
## Absolute root path of all input data | ||
data_path: /path/to/my/data | ||
|
||
# census_path: rp_2019/RP2019_INDCVI_csv.zip | ||
# census_csv: FD_INDCVI_2019.csv | ||
|
||
# ban_path: ban_idf | ||
|
||
# bdtopo_path: bdtopo_idf | ||
|
||
# bpe_path: bpe_2021/bpe21_ensemble_xy_csv.zip | ||
# bpe_csv: bpe21_ensemble_xy.csv | ||
|
||
# gtfs_path: gtfs_idf | ||
|
||
# income_com_path: filosofi_2019/indic-struct-distrib-revenu-2019-COMMUNES.zip | ||
# income_com_xlsx: FILO2019_DISP_COM.xlsx | ||
# income_reg_path: filosofi_2019/indic-struct-distrib-revenu-2019-SUPRA.zip | ||
# income_reg_xlsx: FILO2019_DISP_REG.xlsx | ||
# income_year: 19 | ||
|
||
# tiles_path: tiles_2019/Filosofi2019_carreaux_200m_gpkg.zip | ||
# tiles_file: carreaux_200m_met.gpkg | ||
|
||
# od_pro_path: rp_2019/RP2019_MOBPRO_csv.zip | ||
# od_sco_path: rp_2019/RP2019_MOBSCO_csv.zip | ||
# od_pro_csv: FD_MOBPRO_2019.csv | ||
# od_sco_csv: FD_MOBSCO_2019.csv | ||
|
||
# ## external education locations file | ||
# education_file: education/education_addresses.geojson | ||
|
||
# osm_path: osm_idf | ||
# osm_highways: "*" | ||
# osm_railways: "*" | ||
|
||
# siren_path: sirene/StockUniteLegale_utf8.zip | ||
# siret_path: sirene/StockEtablissement_utf8.zip | ||
# siret_geo_path: sirene/GeolocalisationEtablissement_Sirene_pour_etudes_statistiques_utf8.zip | ||
|
||
# iris_path: iris_2021 | ||
|
||
# population_path: rp_2019/base-ic-evol-struct-pop-2019.zip | ||
# population_xlsx: base-ic-evol-struct-pop-2019.xlsx | ||
# population_year: 19 | ||
|
||
# # population projections | ||
# projection_path: projection_2021 | ||
# projection_scenario: 00_central | ||
# projection_year: 2030 | ||
|
||
# vehicles_method: default # fleet_sample, default | ||
# vehicles_path: vehicles | ||
# vehicles_year: 2021 |