Skip to content

epicentre-msf/hmatch

Repository files navigation

hmatch: Tools for cleaning and matching hierarchically-structured data

Lifecycle: maturing R-CMD-check Codecov test coverage

An R package for cleaning and matching messy hierarchically-structured data (e.g. country / region / district / municipality). The general goal is to match sets of hierarchical values in a raw dataset to corresponding values within a reference dataset, while accounting for potential discrepancies such as:

  • variation in character case, punctuation, spacing, use of accents, or spelling
  • variation in hierarchical resolution (e.g. some entries specified to municipality-level but others only to region)
  • missing values at one or more hierarchical levels
  • values entered at the wrong hierarchical level

Installation

Install from GitHub with:

# install.packages("remotes")
remotes::install_github("epicentre-msf/hmatch")

Matching strategies

Low-level
  • hmatch: match hierarchical sequences up to the highest-resolution level specified within a given row of raw data, optionally allowing for missing values below the match level, and fuzzy matches (using the stringdist package)
Higher-level
  • hmatch_tokens: match tokens rather than entire strings to allow for variation in multi-term names
  • hmatch_permute: sequentially permute hierarchical columns to allow for values entered at the wrong level
  • hmatch_parents: match values at a given hierarchical level based on shared sets of ‘offspring’
  • hmatch_settle: try matching at every level and settle for the highest-resolution match possible
  • hmatch_manual: match using a user-supplied dictionary
  • hmatch_split: implement any other hmatch_ function separately at each hierarchical level, only on unique sequences
  • hmatch_composite: implement a variety of matching strategies in sequence, from most to least strict

String standardization

Independent of optional fuzzy matching with stringdist, hmatch functions use behind-the-scenes string standardization to help account for variation in character case, punctuation, spacing, or use of accents between the raw and reference data. E.g.

              raw_value       reference_value  match
----------------------------------------------------
original:     ILE DE  FRANCE  Île-de-France    FALSE
standardized: ile_de_france   ile_de_france    TRUE

Users can choose default standardization (illustrated above), no standardization, or supply their own preferred function to standardize strings (e.g. tolower).

Usage

Example dataset

The hmatch package contains example datasets ne_raw (messy geographical data) and ne_ref (reference data derived from a shapefile), based on a small subset of northeastern North America.

library(hmatch)

head(ne_raw) # raw messy data
#>      id adm0      adm1         adm2
#> 1 PID01  USA  New York      Suffolk
#> 2 PID02  can   ontario         <NA>
#> 3 PID03  USA  New York Kings County
#> 4 PID04 <NA>      <NA> Philadelphia
#> 5 PID05  USA      <NA>         York
#> 6 PID06  USA new. york    jefferson

head(ne_ref) # reference data derived from shapefile
#>   level adm0         adm1 adm2 hcode
#> 1  adm0  CAN         <NA> <NA>   100
#> 2  adm0  USA         <NA> <NA>   200
#> 3  adm1  CAN      Ontario <NA>   110
#> 4  adm1  USA   New Jersey <NA>   210
#> 5  adm1  USA     New York <NA>   220
#> 6  adm1  USA Pennsylvania <NA>   230

Example workflow

Basic hierarchical matching with hmatch()

We’ll start with a simple call to hmatch to see which rows can be matched with no extra magic.

hmatch(ne_raw, ne_ref, pattern = "^adm")
#>       id adm0           adm1         adm2 level ref_adm0     ref_adm1     ref_adm2 hcode
#> 1  PID01  USA       New York      Suffolk  adm2      USA     New York      Suffolk   227
#> 2  PID02  can        ontario         <NA>  adm1      CAN      Ontario         <NA>   110
#> 3  PID03  USA       New York Kings County  <NA>     <NA>         <NA>         <NA>  <NA>
#> 4  PID04 <NA>           <NA> Philadelphia  adm2      USA Pennsylvania Philadelphia   237
#> 5  PID05  USA           <NA>         York  adm2      USA Pennsylvania         York   238
#> 6  PID06  USA      new. york    jefferson  adm2      USA     New York    Jefferson   222
#> 7  PID07  CAN        Ontario    Peel R.M.  <NA>     <NA>         <NA>         <NA>  <NA>
#> 8  PID08  USA    Pensylvania       Ithaca  <NA>     <NA>         <NA>         <NA>  <NA>
#> 9  PID09  USA       New_York         King  <NA>     <NA>         <NA>         <NA>  <NA>
#> 10 PID10 <NA>           <NA> Bergen, N.J.  <NA>     <NA>         <NA>         <NA>  <NA>
#> 11 PID11  USA   Philadelphia         <NA>  <NA>     <NA>         <NA>         <NA>  <NA>
#> 12 PID12  USA             NJ         <NA>  <NA>     <NA>         <NA>         <NA>  <NA>
#> 13 PID13 <NA>           <NA>    Jeffersen  <NA>     <NA>         <NA>         <NA>  <NA>
#> 14 PID14 <NA>           <NA>         york  adm2      CAN      Ontario         York   115
#> 15 PID14 <NA>           <NA>         york  adm2      USA Pennsylvania         York   238
#> 16 PID15  USA New York State     New York  <NA>     <NA>         <NA>         <NA>  <NA>

There are still quite a few unmatched rows, and entry ‘PID14’ actually matches two different rows within ref, so we’ll press on. We can separate the matched and unmatched rows using inner- and anti-joins respectively, specifically using the “resolve_” join type here to only consider matches that are unique.

(raw_match1 <- hmatch(ne_raw, ne_ref, pattern = "^adm", type = "resolve_inner"))
#>      id adm0      adm1         adm2 level ref_adm0     ref_adm1     ref_adm2 hcode
#> 1 PID01  USA  New York      Suffolk  adm2      USA     New York      Suffolk   227
#> 2 PID02  can   ontario         <NA>  adm1      CAN      Ontario         <NA>   110
#> 3 PID04 <NA>      <NA> Philadelphia  adm2      USA Pennsylvania Philadelphia   237
#> 4 PID05  USA      <NA>         York  adm2      USA Pennsylvania         York   238
#> 5 PID06  USA new. york    jefferson  adm2      USA     New York    Jefferson   222

(raw_remain1 <- hmatch(ne_raw, ne_ref, pattern = "^adm", type = "resolve_anti"))
#>       id adm0           adm1         adm2
#> 1  PID03  USA       New York Kings County
#> 2  PID07  CAN        Ontario    Peel R.M.
#> 3  PID08  USA    Pensylvania       Ithaca
#> 4  PID09  USA       New_York         King
#> 5  PID10 <NA>           <NA> Bergen, N.J.
#> 6  PID11  USA   Philadelphia         <NA>
#> 7  PID12  USA             NJ         <NA>
#> 8  PID13 <NA>           <NA>    Jeffersen
#> 9  PID14 <NA>           <NA>         york
#> 10 PID15  USA New York State     New York
Fuzzy matching

Next we’ll add in fuzzy-matching, using the default maximum string-distance of 1.

hmatch(raw_remain1, ne_ref, pattern = "^adm", fuzzy = TRUE, type = "inner")
#>      id adm0     adm1      adm2 level ref_adm0     ref_adm1  ref_adm2 hcode
#> 1 PID09  USA New_York      King  adm2      USA     New York     Kings   223
#> 2 PID13 <NA>     <NA> Jeffersen  adm2      USA     New York Jefferson   222
#> 3 PID13 <NA>     <NA> Jeffersen  adm2      USA Pennsylvania Jefferson   235
#> 4 PID14 <NA>     <NA>      york  adm2      CAN      Ontario      York   115
#> 5 PID14 <NA>     <NA>      york  adm2      USA Pennsylvania      York   238

Only one additional unique match, so we’ll again split and move on. Note that we’ve been using the pattern argument above to specify the hierarchical columns in raw and ref, but because the hierarchical columns have the same names in raw and ref (and are the only matching column names), we can drop the pattern argument for brevity.

(raw_match2 <- hmatch(raw_remain1, ne_ref, fuzzy = TRUE, type = "resolve_inner"))
#>      id adm0     adm1 adm2 level ref_adm0 ref_adm1 ref_adm2 hcode
#> 1 PID09  USA New_York King  adm2      USA New York    Kings   223

(raw_remain2 <- hmatch(raw_remain1, ne_ref, fuzzy = TRUE, type = "resolve_anti"))
#>      id adm0           adm1         adm2
#> 1 PID03  USA       New York Kings County
#> 2 PID07  CAN        Ontario    Peel R.M.
#> 3 PID08  USA    Pensylvania       Ithaca
#> 4 PID10 <NA>           <NA> Bergen, N.J.
#> 5 PID11  USA   Philadelphia         <NA>
#> 6 PID12  USA             NJ         <NA>
#> 7 PID13 <NA>           <NA>    Jeffersen
#> 8 PID14 <NA>           <NA>         york
#> 9 PID15  USA New York State     New York
Tokenized matching

Next let’s try hmatch_tokens, which matches based on components of strings (i.e. tokens) rather than entire strings.

(raw_match3 <- hmatch_tokens(raw_remain2, ne_ref, type = "resolve_inner"))
#>      id adm0           adm1         adm2 level ref_adm0   ref_adm1 ref_adm2 hcode
#> 1 PID03  USA       New York Kings County  adm2      USA   New York    Kings   223
#> 2 PID07  CAN        Ontario    Peel R.M.  adm2      CAN    Ontario     Peel   113
#> 3 PID10 <NA>           <NA> Bergen, N.J.  adm2      USA New Jersey   Bergen   211
#> 4 PID15  USA New York State     New York  adm2      USA   New York New York   225

(raw_remain3 <- hmatch_tokens(raw_remain2, ne_ref, type = "resolve_anti"))
#>      id adm0         adm1      adm2
#> 1 PID08  USA  Pensylvania    Ithaca
#> 2 PID11  USA Philadelphia      <NA>
#> 3 PID12  USA           NJ      <NA>
#> 4 PID13 <NA>         <NA> Jeffersen
#> 5 PID14 <NA>         <NA>      york
Permutation matching

If there are any values entered at the wrong hierarchical level, we can try systematically permuting the hierarchical columns before matching.

(raw_match4 <- hmatch_permute(raw_remain3, ne_ref, type = "resolve_inner"))
#>      id adm0         adm1 adm2 level ref_adm0     ref_adm1     ref_adm2 hcode
#> 1 PID11  USA Philadelphia <NA>  adm2      USA Pennsylvania Philadelphia   237

(raw_remain4 <- hmatch_permute(raw_remain3, ne_ref, type = "resolve_anti"))
#>      id adm0        adm1      adm2
#> 1 PID08  USA Pensylvania    Ithaca
#> 2 PID12  USA          NJ      <NA>
#> 3 PID13 <NA>        <NA> Jeffersen
#> 4 PID14 <NA>        <NA>      york
The toughest cases

For the remaining rows that we haven’t yet matched, there a few options. We could use hmatch_settle() to settle for matches below the highest-resolution level specified within a given row of raw. We could also do some ‘manual’ comparison of the raw and reference datasets and create a dictionary to recode values within raw to match corresponding entries in ref. Here we’ll do both.

ne_dict <- data.frame(
  value = "NJ",
  replacement = "New Jersey",
  variable = "adm1"
)

(raw_match5 <- hmatch_settle(raw_remain4, ne_ref, dict = ne_dict,
                             fuzzy = TRUE, type = "resolve_inner"))
#>      id adm0        adm1      adm2 level ref_adm0     ref_adm1 ref_adm2 hcode
#> 1 PID08  USA Pensylvania    Ithaca  adm1      USA Pennsylvania     <NA>   230
#> 2 PID12  USA          NJ      <NA>  adm1      USA   New Jersey     <NA>   210
#> 3 PID13 <NA>        <NA> Jeffersen  adm2      USA         <NA>     <NA>   222

(raw_remain5 <- hmatch_settle(raw_remain4, ne_ref, dict = ne_dict,
                              fuzzy = TRUE, type = "resolve_anti"))
#>      id adm0 adm1 adm2
#> 1 PID14 <NA> <NA> york

About

Tools for cleaning and matching hierarchically-structured data

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages