A frankensteinian amalgamation of notebooks, models and techniques for the generation of AI Art and Animations.
- Focus on running from Windows, Linux, Google Colab, and Docker via either CLI or Notebook.
- Move all functions possible out of the main
disco.py
module intodd.py
so thatdisco.py
can become readable. - Instead changing parameters directly in
disco.py
, parameters can be controlled by environment variables, command-line arguments, or config (YAML) files. - Allows YAML parameter files to be used as inputs. (See
examples/configs
for more) - SQLite support to store parameters and images for querying against later.
- Iterate over parameters via
modifiers
andmultipliers
. (Seeexamples/configs
for more)
Follow these steps for the first time that you are running Disco Diffusion from Windows.
- Anaconda installed
- Nvidia CUDA Toolkit Installed
- MS VS Community Installed with C++ checkmarked
-
From Anaconda Powershell Prompt:
This command will allow you to use
conda
from a "regular" powershell session.conda init powershell exit
-
From your VS Code Powershell prompt:
Note: These commands should be run from the working directory of this cloned repository.
This command will pull all dependencies needed by Disco Diffusion into a conda environment called
discodiffusion
conda env create -f environment.yml conda activate discodiffusion
-
Note: If you have already activated a
discodiffusion
conda environment, you can refresh it if this repo has changed by typing:conda env update --prefix discodiffusion --file environment.yml --prune
-
-
Compile
pytorch3d
Note: These commands should be run from the working directory of this cloned repository.
For reason I'm not 100% clear on,
pytorch3d
must be compiled in Windows. (Hence the requirement for C++ tool mentioned in Pre-requisties...)git clone https://github.com/facebookresearch/pytorch3d.git cd pytorch3d python setup.py install cd ..
-
Execute a test run:
The following test run will run with all defaults (so "the lighthouse run" as it is coined.) Image output and current image progress (
progress.png
) will be stored inimages_out
.conda activate discodiffusion python disco.py
-
Windows PowerShell:
python3 -m pip install --user virtualenv python -m venv .\.venv\discodiffusion .venv\discodiffusion\Scripts\Activate.ps1 pip install -r requirements.txt
-
Windows Command Prompt:
python3 -m pip install --user virtualenv python -m venv .\.venv\discodiffusion .venv\discodiffusion\Scripts\Activate.cmd pip install -r requirements.txt
-
Linux
python3 -m pip install --user virtualenv python -m venv .venv/discodiffusion source .venv/discodiffusion/bin/activate pip install -r requirements.txt pip install git+https://github.com/facebookresearch/pytorch3d.git@stable
-
Test Run
python disco.py
A batch run should begin. Kill with Control+C Example:
Using device: cuda:0 💻 Starting Run: TimeToDisco(0) at frame 0 🌱 Randomly using seed: 1825817222 Prepping models... 🤖 Loading model 'ViT-B/32'... 🤖 Loading model 'ViT-B/16'... 🤖 Loading model 'RN50'... 🤖 Loading secondary model... 🤖 Loading LPIPS... 🌱 Seed used: 1825817222 Frame 0 📝 Prompt: ['A beautiful painting of a singular lighthouse, shining its light across a tumultuous sea of blood by greg rutkowski and thomas kinkade, Trending on artstation.', 'yellow color scheme'] Batches: 0%| | 0/50 [00:00<?, ?it/s] 4%|████▌ | 10/240 [00:14<05:05, 1.33s/it]