Skip to content

ennajari/Linear_Regression_Gradient_Descent

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Linear Regression with Gradient Descent

Description

This project implements a simple linear regression model using gradient descent optimization. It demonstrates the process of creating a dataset, implementing a linear model, defining a cost function, and optimizing the model parameters using gradient descent.

Features

  • Generate synthetic regression data
  • Implement a linear regression model
  • Define and calculate cost function
  • Implement gradient descent optimization
  • Visualize data and model predictions

Requirements

  • Python 3.x
  • NumPy
  • Matplotlib
  • Scikit-learn

Usage

  1. Run the script to generate a synthetic dataset.
  2. The script will train a linear regression model using gradient descent.
  3. Visualizations of the data and model predictions will be displayed.

File Structure

  • linear_regression_gd.py: Main Python script containing the implementation
  • README.md: This file, containing project information

Future Improvements

  • Add command-line arguments for hyperparameters
  • Implement additional regression algorithms for comparison
  • Create a Jupyter notebook with step-by-step explanations

Contributing

Contributions, issues, and feature requests are welcome. Feel free to check [issues page] if you want to contribute.

License

MIT

About

LinearRegressionGradientDescent

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published