-
Notifications
You must be signed in to change notification settings - Fork 8.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Enterprise Search API endpoints for 1 Click ELSER ML Model Deploy…
…ment (#155213) ## Summary Adds Enterprise Search internal API endpoints for deploying and monitoring the deployment status of an ELSER ML model (and possibly other models in the future) via the 1 click deployment process. This is to not allow a direct call from the Kibana front end to the underlying Elasticsearch ML endpoints. Closes elastic/search-team#4295 and elastic/search-team#4397 ### Checklist - [x] [Unit or functional tests](https://www.elastic.co/guide/en/kibana/master/development-tests.html) were updated or added to match the most common scenarios - [x] This was checked for [cross-browser compatibility](https://www.elastic.co/support/matrix#matrix_browsers) ### For maintainers - [ ] This was checked for breaking API changes and was [labeled appropriately](https://www.elastic.co/guide/en/kibana/master/contributing.html#kibana-release-notes-process) --------- Co-authored-by: kibanamachine <[email protected]>
- Loading branch information
1 parent
2cefa66
commit c964441
Showing
10 changed files
with
1,118 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
/* | ||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one | ||
* or more contributor license agreements. Licensed under the Elastic License | ||
* 2.0; you may not use this file except in compliance with the Elastic License | ||
* 2.0. | ||
*/ | ||
|
||
import { MlTrainedModelConfig } from '@elastic/elasticsearch/lib/api/typesWithBodyKey'; | ||
|
||
export enum MlModelDeploymentState { | ||
NotDeployed = '', | ||
Downloading = 'downloading', | ||
Downloaded = 'fully_downloaded', | ||
Starting = 'starting', | ||
Started = 'started', | ||
FullyAllocated = 'fully_allocated', | ||
} | ||
|
||
export interface MlModelDeploymentStatus { | ||
deploymentState: MlModelDeploymentState; | ||
modelId: string; | ||
nodeAllocationCount: number; | ||
startTime: number; | ||
targetAllocationCount: number; | ||
} | ||
|
||
// TODO - we can remove this extension once the new types are available | ||
// in kibana that includes this field | ||
export interface MlTrainedModelConfigWithDefined extends MlTrainedModelConfig { | ||
fully_defined?: boolean; | ||
} |
272 changes: 272 additions & 0 deletions
272
x-pack/plugins/enterprise_search/server/lib/ml/get_ml_model_deployment_status.test.ts
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,272 @@ | ||
/* | ||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one | ||
* or more contributor license agreements. Licensed under the Elastic License | ||
* 2.0; you may not use this file except in compliance with the Elastic License | ||
* 2.0. | ||
*/ | ||
|
||
import { MlTrainedModels } from '@kbn/ml-plugin/server'; | ||
|
||
import { MlModelDeploymentState } from '../../../common/types/ml'; | ||
import { ElasticsearchResponseError } from '../../utils/identify_exceptions'; | ||
|
||
import { getMlModelDeploymentStatus } from './get_ml_model_deployment_status'; | ||
|
||
describe('getMlModelDeploymentStatus', () => { | ||
const mockTrainedModelsProvider = { | ||
getTrainedModels: jest.fn(), | ||
getTrainedModelsStats: jest.fn(), | ||
}; | ||
|
||
beforeEach(() => { | ||
jest.clearAllMocks(); | ||
}); | ||
|
||
it('should error when there is no trained model provider', () => { | ||
expect(() => getMlModelDeploymentStatus('mockModelName', undefined)).rejects.toThrowError( | ||
'Machine Learning is not enabled' | ||
); | ||
}); | ||
|
||
it('should return not deployed status if no model is found', async () => { | ||
const mockGetReturn = { | ||
count: 0, | ||
trained_model_configs: [], | ||
}; | ||
|
||
mockTrainedModelsProvider.getTrainedModels.mockImplementation(() => | ||
Promise.resolve(mockGetReturn) | ||
); | ||
|
||
const deployedStatus = await getMlModelDeploymentStatus( | ||
'mockModelName', | ||
mockTrainedModelsProvider as unknown as MlTrainedModels | ||
); | ||
|
||
expect(deployedStatus.deploymentState).toEqual(MlModelDeploymentState.NotDeployed); | ||
expect(deployedStatus.modelId).toEqual('mockModelName'); | ||
}); | ||
|
||
it('should return not deployed status if no model is found when getTrainedModels has a 404', async () => { | ||
const mockErrorRejection: ElasticsearchResponseError = { | ||
meta: { | ||
body: { | ||
error: { | ||
type: 'resource_not_found_exception', | ||
}, | ||
}, | ||
statusCode: 404, | ||
}, | ||
name: 'ResponseError', | ||
}; | ||
|
||
mockTrainedModelsProvider.getTrainedModels.mockImplementation(() => | ||
Promise.reject(mockErrorRejection) | ||
); | ||
|
||
const deployedStatus = await getMlModelDeploymentStatus( | ||
'mockModelName', | ||
mockTrainedModelsProvider as unknown as MlTrainedModels | ||
); | ||
|
||
expect(deployedStatus.deploymentState).toEqual(MlModelDeploymentState.NotDeployed); | ||
expect(deployedStatus.modelId).toEqual('mockModelName'); | ||
}); | ||
|
||
it('should return downloading if the model is downloading', async () => { | ||
const mockGetReturn = { | ||
count: 1, | ||
trained_model_configs: [ | ||
{ | ||
fully_defined: false, | ||
model_id: 'mockModelName', | ||
}, | ||
], | ||
}; | ||
|
||
mockTrainedModelsProvider.getTrainedModels.mockImplementation(() => | ||
Promise.resolve(mockGetReturn) | ||
); | ||
|
||
const deployedStatus = await getMlModelDeploymentStatus( | ||
'mockModelName', | ||
mockTrainedModelsProvider as unknown as MlTrainedModels | ||
); | ||
|
||
expect(deployedStatus.deploymentState).toEqual(MlModelDeploymentState.Downloading); | ||
expect(deployedStatus.modelId).toEqual('mockModelName'); | ||
}); | ||
|
||
it('should return downloaded if the model is downloaded but not deployed', async () => { | ||
const mockGetReturn = { | ||
count: 1, | ||
trained_model_configs: [ | ||
{ | ||
fully_defined: true, | ||
model_id: 'mockModelName', | ||
}, | ||
], | ||
}; | ||
|
||
const mockStatsReturn = { | ||
count: 0, | ||
trained_model_stats: [], | ||
}; | ||
|
||
mockTrainedModelsProvider.getTrainedModels.mockImplementation(() => | ||
Promise.resolve(mockGetReturn) | ||
); | ||
mockTrainedModelsProvider.getTrainedModelsStats.mockImplementation(() => | ||
Promise.resolve(mockStatsReturn) | ||
); | ||
|
||
const deployedStatus = await getMlModelDeploymentStatus( | ||
'mockModelName', | ||
mockTrainedModelsProvider as unknown as MlTrainedModels | ||
); | ||
|
||
expect(deployedStatus.deploymentState).toEqual(MlModelDeploymentState.Downloaded); | ||
expect(deployedStatus.modelId).toEqual('mockModelName'); | ||
}); | ||
|
||
it('should return starting if the model is starting deployment', async () => { | ||
const mockGetReturn = { | ||
count: 1, | ||
trained_model_configs: [ | ||
{ | ||
fully_defined: true, | ||
model_id: 'mockModelName', | ||
}, | ||
], | ||
}; | ||
|
||
const mockStatsReturn = { | ||
count: 1, | ||
trained_model_stats: [ | ||
{ | ||
deployment_stats: { | ||
allocation_status: { | ||
allocation_count: 0, | ||
state: 'starting', | ||
target_allocation_count: 3, | ||
}, | ||
start_time: 123456, | ||
}, | ||
model_id: 'mockModelName', | ||
}, | ||
], | ||
}; | ||
|
||
mockTrainedModelsProvider.getTrainedModels.mockImplementation(() => | ||
Promise.resolve(mockGetReturn) | ||
); | ||
mockTrainedModelsProvider.getTrainedModelsStats.mockImplementation(() => | ||
Promise.resolve(mockStatsReturn) | ||
); | ||
|
||
const deployedStatus = await getMlModelDeploymentStatus( | ||
'mockModelName', | ||
mockTrainedModelsProvider as unknown as MlTrainedModels | ||
); | ||
|
||
expect(deployedStatus.deploymentState).toEqual(MlModelDeploymentState.Starting); | ||
expect(deployedStatus.modelId).toEqual('mockModelName'); | ||
expect(deployedStatus.nodeAllocationCount).toEqual(0); | ||
expect(deployedStatus.startTime).toEqual(123456); | ||
expect(deployedStatus.targetAllocationCount).toEqual(3); | ||
}); | ||
|
||
it('should return started if the model has been started', async () => { | ||
const mockGetReturn = { | ||
count: 1, | ||
trained_model_configs: [ | ||
{ | ||
fully_defined: true, | ||
model_id: 'mockModelName', | ||
}, | ||
], | ||
}; | ||
|
||
const mockStatsReturn = { | ||
count: 1, | ||
trained_model_stats: [ | ||
{ | ||
deployment_stats: { | ||
allocation_status: { | ||
allocation_count: 1, | ||
state: 'started', | ||
target_allocation_count: 3, | ||
}, | ||
start_time: 123456, | ||
}, | ||
model_id: 'mockModelName', | ||
}, | ||
], | ||
}; | ||
|
||
mockTrainedModelsProvider.getTrainedModels.mockImplementation(() => | ||
Promise.resolve(mockGetReturn) | ||
); | ||
mockTrainedModelsProvider.getTrainedModelsStats.mockImplementation(() => | ||
Promise.resolve(mockStatsReturn) | ||
); | ||
|
||
const deployedStatus = await getMlModelDeploymentStatus( | ||
'mockModelName', | ||
mockTrainedModelsProvider as unknown as MlTrainedModels | ||
); | ||
|
||
expect(deployedStatus.deploymentState).toEqual(MlModelDeploymentState.Started); | ||
expect(deployedStatus.modelId).toEqual('mockModelName'); | ||
expect(deployedStatus.nodeAllocationCount).toEqual(1); | ||
expect(deployedStatus.startTime).toEqual(123456); | ||
expect(deployedStatus.targetAllocationCount).toEqual(3); | ||
}); | ||
|
||
it('should return fully allocated if the model is fully allocated', async () => { | ||
const mockGetReturn = { | ||
count: 1, | ||
trained_model_configs: [ | ||
{ | ||
fully_defined: true, | ||
model_id: 'mockModelName', | ||
}, | ||
], | ||
}; | ||
|
||
const mockStatsReturn = { | ||
count: 1, | ||
trained_model_stats: [ | ||
{ | ||
deployment_stats: { | ||
allocation_status: { | ||
allocation_count: 3, | ||
state: 'fully_allocated', | ||
target_allocation_count: 3, | ||
}, | ||
start_time: 123456, | ||
}, | ||
model_id: 'mockModelName', | ||
}, | ||
], | ||
}; | ||
|
||
mockTrainedModelsProvider.getTrainedModels.mockImplementation(() => | ||
Promise.resolve(mockGetReturn) | ||
); | ||
mockTrainedModelsProvider.getTrainedModelsStats.mockImplementation(() => | ||
Promise.resolve(mockStatsReturn) | ||
); | ||
|
||
const deployedStatus = await getMlModelDeploymentStatus( | ||
'mockModelName', | ||
mockTrainedModelsProvider as unknown as MlTrainedModels | ||
); | ||
|
||
expect(deployedStatus.deploymentState).toEqual(MlModelDeploymentState.FullyAllocated); | ||
expect(deployedStatus.modelId).toEqual('mockModelName'); | ||
expect(deployedStatus.nodeAllocationCount).toEqual(3); | ||
expect(deployedStatus.startTime).toEqual(123456); | ||
expect(deployedStatus.targetAllocationCount).toEqual(3); | ||
}); | ||
}); |
Oops, something went wrong.