Deep Learning Nanodegree from Udacity
- Lecture 3: Transfer Learning
- Lecture 4: Weight Initialization
- Lecture 5: Autoencoder
- Simple Autoencoder
- Convolutional Autoencoder: Only for CPU and CUDA. XPU has memory leak issue.
- Denoising Autoencoder: Only for CPU and CUDA. XPU has memory leak issue.
- Lecture 5: Embeddings & Word2Vec
- Lecture 8: Attention
- Lecture 1: Basic GAN
- Lecture 2: Deep Convolutional GANs
- Batch Normalization
- Generating Street View Home Number (SVHN): Only for CPU and CUDA. XPU has memory leak issue.
- Lecture 4: CycleGAN
- Summer to Winter Image Transformation: Only for CPU and CUDA. XPU has memory leak issue.
Inference on CPU only (not using XPU or CUDA).
- Lecture 2: Building a Model using SageMaker
- Lecture 3: Deploying and Using a Model
- Project 1: Predicting Bike-Sharing Patterns
- Project 2: Classifying Dog's Breed
- Project 4: Generating TV Script: Only for CPU and CUDA. 'aten::_thnn_fused_lstm_cell' is not currently implemented for the XPU.
- Project 5: Generating Face
- Project 7: Deploying Sentiment Analysis Model
Please follow PyTorch 2.6 Prerequisites for Intel GPUs article to install Intel GPU driver and deep learning essentials.
Tested on the following hardware specification and software version.
Hardware Specification
- CPU: Intel® Core™ Ultra 9 Processor 285K
- CPU Cores: 24 (8 Performance-cores and 16 Efficient-cores)
- CPU Threads: 24
- Memory: 32 GiB
- GPU: Intel® Arc™ A770 Graphics
- GPU Memory: 16 GiB
Software Version
- Ubuntu 24.04.1 LTS
- Intel Deep Learning Essentials 2025.0.1-25
- Python 3.12.3
- PyTorch 2.6.0+xpu
- TorchVision 0.21.0+xpu
- opencv-python 4.10.0.84
- NumPy 2.1.2
- Matplotlib 3.10.0
- Pandas 2.2.3
- scikit-learn 1.6.0
Create virtual environment.
$ python3 -m venv pytorch_arc_env
$ source pytorch_arc_env/bin/activate
$ python -m pip install --upgrade pip
Install PyTorch and other required packages.
$ pip install torch==2.6 torchvision torchaudio --index-url https://download.pytorch.org/whl/test/xpu
$ cd DLND
$ pip install --upgrade -r requirements.txt
Activate virtual environment and setup variables.
$ source pytorch_arc_env/bin/activate
$ source /opt/intel/oneapi/compiler/2025.0/env/vars.sh
$ source /opt/intel/oneapi/umf/0.9/env/vars.sh
$ source /opt/intel/oneapi/pti/0.10/env/vars.sh
Detect GPU.
$ python -c "import torch; print(torch.xpu.is_available())"
True
Run notebooks.
$ cd DLND
$ jupyter lab