Skip to content

ekaakurniawan/DLND

Repository files navigation

DLND

Deep Learning Nanodegree from Udacity

Contents

Assignments

Part 3: Convolutional Neural Networks

Part 4: Recurrent Neural Networks

Part 5: Generative Adversarial Networks

Part 6: Deploying Model

Inference on CPU only (not using XPU or CUDA).

Projects

Setup

Intel GPU

Please follow PyTorch 2.6 Prerequisites for Intel GPUs article to install Intel GPU driver and deep learning essentials.

Tested on the following hardware specification and software version.

Hardware Specification

  • CPU: Intel® Core™ Ultra 9 Processor 285K
  • CPU Cores: 24 (8 Performance-cores and 16 Efficient-cores)
  • CPU Threads: 24
  • Memory: 32 GiB
  • GPU: Intel® Arc™ A770 Graphics
  • GPU Memory: 16 GiB

Software Version

  • Ubuntu 24.04.1 LTS
  • Intel Deep Learning Essentials 2025.0.1-25
  • Python 3.12.3
  • PyTorch 2.6.0+xpu
  • TorchVision 0.21.0+xpu
  • opencv-python 4.10.0.84
  • NumPy 2.1.2
  • Matplotlib 3.10.0
  • Pandas 2.2.3
  • scikit-learn 1.6.0

Install Requirements

Create virtual environment.

$ python3 -m venv pytorch_arc_env
$ source pytorch_arc_env/bin/activate
$ python -m pip install --upgrade pip

Install PyTorch and other required packages.

$ pip install torch==2.6 torchvision torchaudio --index-url https://download.pytorch.org/whl/test/xpu
$ cd DLND
$ pip install --upgrade -r requirements.txt

Test Run

Activate virtual environment and setup variables.

$ source pytorch_arc_env/bin/activate

$ source /opt/intel/oneapi/compiler/2025.0/env/vars.sh
$ source /opt/intel/oneapi/umf/0.9/env/vars.sh
$ source /opt/intel/oneapi/pti/0.10/env/vars.sh

Detect GPU.

$ python -c "import torch; print(torch.xpu.is_available())"
True

Run notebooks.

$ cd DLND
$ jupyter lab