-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add initial script for training neural network for roman pots momentu…
…m reconstruction. Function create a parametried dense neural network and train it with standardized input data.
- Loading branch information
Showing
1 changed file
with
92 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
import pandas as pd | ||
import numpy as np | ||
import seaborn as sb | ||
import torch | ||
import torch.nn as nn | ||
import torch.optim as optim | ||
import torch.optim.lr_scheduler as lr_scheduler | ||
import matplotlib.pyplot as plt | ||
torch.set_default_dtype(torch.float32) | ||
|
||
if torch.cuda.is_available(): | ||
device = torch.device("cuda") | ||
print("GPU is available!") | ||
else: | ||
device = torch.device("cpu") | ||
print("GPU not found. Using CPU.") | ||
|
||
class NeuralNet(nn.Module): | ||
def __init__(self, size_input, size_output, n_layers, size_firsthiddenlayer=128, multiplier=0.5, leak_rate=0.025): | ||
super().__init__() | ||
self.fc = [] | ||
self.relu = [] | ||
self.n_layers = n_layers | ||
self.fc.append(nn.Linear(size_input,size_firsthiddenlayer)) | ||
self.relu.append(nn.LeakyReLU(leak_rate)) | ||
for i in range(1,n_layers-1): | ||
size_currenthiddenlayer = int(size_firsthiddenlayer*multiplier**i) | ||
self.fc.append(nn.Linear(int(size_currenthiddenlayer/multiplier), size_currenthiddenlayer)) | ||
self.relu.append(nn.LeakyReLU(leak_rate)) | ||
self.fc.append(nn.Linear(size_currenthiddenlayer, size_output)) | ||
self.fc=nn.ParameterList(self.fc) | ||
self.relu=nn.ParameterList(self.relu) | ||
print("Create a network with the linear layers "+str(self.fc)) | ||
print("and leaky relu activation layers "+str(self.relu)) | ||
|
||
def forward(self, x): | ||
for i in range(0,self.n_layers-1): | ||
x = self.fc[i](x) | ||
x = self.relu[i](x) | ||
x = self.fc[self.n_layers-1](x) | ||
return x | ||
|
||
def standardize(tensor): | ||
mean = torch.mean(tensor, axis=0) | ||
std = torch.std(tensor, axis=0) | ||
standardized_tensor = (tensor - mean) / std | ||
return standardized_tensor | ||
|
||
def train_model(input_tensor, target_tensor, model): | ||
|
||
# Define the loss function and optimizer | ||
criterion = torch.nn.HuberLoss(reduction='mean', delta=1.0) | ||
optimizer = torch.optim.Adam(model.parameters(), lr=0.01) | ||
|
||
# Create a learning rate scheduler | ||
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer,'min',patience=100,cooldown=100,factor=0.5,threshold=1e-4,verbose=True) | ||
|
||
# Track the losses | ||
losses = [] | ||
|
||
# Train the model | ||
for epoch in range(num_epochs): | ||
# Forward pass | ||
inputs, targets = input_tensor.to(device), target_tensor.to(device) | ||
predictions = model(inputs) | ||
loss = criterion(predictions, targets) | ||
|
||
# Backward and optimize | ||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
|
||
# Track the loss value at each epoch | ||
losses.append(loss.item()) | ||
|
||
# Step the learning rate scheduler | ||
scheduler.step(loss) | ||
|
||
# Print progress | ||
if (epoch + 1) % 10 == 0: | ||
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.3e}') | ||
|
||
# Plot the loss values | ||
plt.plot(range(1, num_epochs+1), losses) | ||
plt.xlabel('Epoch') | ||
plt.ylabel('Loss') | ||
plt.title('Loss as a Function of Epoch') | ||
plt.savefig('Loss vs Epoch') | ||
|
||
return model | ||
|
||
|