Skip to content

edodema/BestPractices2Body

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Best practices for 2-Body Pose Forecasting

PWC PWC

PyTorch Logging: wandb Code style: black

The official PyTorch implementation of the 5th IEEE/CVF CVPR Precognition Workshop paper Best Practices for 2-Body Pose Forecasting.

Visit our webpage for more details.

teaser

Content

.
├── assets
│   ├── poses-viz.png
│   └── teaser.png
├── dataset
│   └── pi
├── env.yaml
├── log
├── README.md
├── snapshot
│   └── model-iter-40000.pth
├── src
│   ├── datasets
│   │   ├── data_utils_pi3d.py
│   │   ├── pi3d_hier.py
│   │   ├── pi3d.py
│   │   └── vis_2p.py
│   ├── model.py
│   ├── test.py
│   ├── train.py
│   └── utils
│       ├── angle_to_joint.py
│       ├── config.py
│       ├── logger.py
│       ├── misc.py
│       ├── parser.py
│       ├── pyt_utils.py
│       ├── rigid_align.py
│       ├── util.py
│       └── visualize.py
└── viz

Setup

Environment

conda env create -f env.yaml
conda activate bp42b

Dataset

Request ExPI dataset here and place the pi folder under datasets/.

Training

PYTHONPATH=. python src/train.py

Test

PYTHONPATH=. python src/test.py

Visualization

PYTHONPATH=. python src/test.py --visualize

Results

Quantitative

On the common action split of ExPI dataset, we achieve the following results:

5 10 15 25
MPJPE 40 87.1 130.1 201.3
AME 25 53 76 110

On the unseen action split of ExPI dataset, we achieve the following results:

10 15 20
MPJPE 110.4 161.7 205.3
AME 65 93 114

Qualitative

results

Citation

@InProceedings{Rahman_2023_CVPR,
    author    = {Rahman, Muhammad Rameez Ur and Scofano, Luca and De Matteis, Edoardo and Flaborea, Alessandro and Sampieri, Alessio and Galasso, Fabio},
    title     = {Best Practices for 2-Body Pose Forecasting},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    month     = {June},
    year      = {2023},
    pages     = {3614-3624}
}

Acknowledgements

We build upon siMLPe and take some code from MultiMotion.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages