-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'develop' into feature/list-of-edge-builders
- Loading branch information
Showing
6 changed files
with
270 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from .post_process import RemoveUnconnectedNodes | ||
|
||
__all__ = [RemoveUnconnectedNodes] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
# (C) Copyright 2024 Anemoi contributors. | ||
# | ||
# This software is licensed under the terms of the Apache Licence Version 2.0 | ||
# which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. | ||
# | ||
# In applying this licence, ECMWF does not waive the privileges and immunities | ||
# granted to it by virtue of its status as an intergovernmental organisation | ||
# nor does it submit to any jurisdiction. | ||
|
||
from __future__ import annotations | ||
|
||
import logging | ||
from abc import ABC | ||
from abc import abstractmethod | ||
|
||
import torch | ||
from torch_geometric.data import HeteroData | ||
|
||
LOGGER = logging.getLogger(__name__) | ||
|
||
|
||
class PostProcessor(ABC): | ||
|
||
@abstractmethod | ||
def update_graph(self, graph: HeteroData) -> HeteroData: | ||
raise NotImplementedError(f"The {self.__class__.__name__} class does not implement the method update_graph().") | ||
|
||
|
||
class BaseMaskingProcessor(PostProcessor, ABC): | ||
"""Base class for mask based processor.""" | ||
|
||
def __init__( | ||
self, | ||
nodes_name: str, | ||
save_mask_indices_to_attr: str | None = None, | ||
) -> None: | ||
self.nodes_name = nodes_name | ||
self.save_mask_indices_to_attr = save_mask_indices_to_attr | ||
self.mask: torch.Tensor = None | ||
|
||
def removing_nodes(self, graph: HeteroData) -> HeteroData: | ||
"""Remove nodes based on the mask passed.""" | ||
for attr_name in graph[self.nodes_name].node_attrs(): | ||
graph[self.nodes_name][attr_name] = graph[self.nodes_name][attr_name][self.mask] | ||
|
||
return graph | ||
|
||
def create_indices_mapper_from_mask(self) -> dict[int, int]: | ||
return dict(zip(torch.where(self.mask)[0].tolist(), list(range(self.mask.sum())))) | ||
|
||
def update_edge_indices(self, graph: HeteroData) -> HeteroData: | ||
"""Update the edge indices to the new position of the nodes.""" | ||
idx_mapping = self.create_indices_mapper_from_mask() | ||
for edges_name in graph.edge_types: | ||
if edges_name[0] == self.nodes_name: | ||
graph[edges_name].edge_index[0] = graph[edges_name].edge_index[0].apply_(idx_mapping.get) | ||
|
||
if edges_name[2] == self.nodes_name: | ||
graph[edges_name].edge_index[1] = graph[edges_name].edge_index[1].apply_(idx_mapping.get) | ||
|
||
return graph | ||
|
||
@abstractmethod | ||
def compute_mask(self, graph: HeteroData) -> torch.Tensor: ... | ||
|
||
def add_attribute(self, graph: HeteroData) -> HeteroData: | ||
"""Add an attribute of the mask indices as node attribute.""" | ||
if self.save_mask_indices_to_attr is not None: | ||
LOGGER.info( | ||
f"An attribute {self.save_mask_indices_to_attr} has been added with the indices to mask the nodes from the original graph." | ||
) | ||
mask_indices = torch.where(self.mask)[0].reshape((graph[self.nodes_name].num_nodes, -1)) | ||
graph[self.nodes_name][self.save_mask_indices_to_attr] = mask_indices | ||
|
||
return graph | ||
|
||
def update_graph(self, graph: HeteroData) -> HeteroData: | ||
"""Post-process the graph. | ||
Parameters | ||
---------- | ||
graph: HeteroData | ||
The graph to post-process. | ||
Returns | ||
------- | ||
HeteroData | ||
The post-processed graph. | ||
""" | ||
self.mask = self.compute_mask(graph) | ||
LOGGER.info(f"Removing {(~self.mask).sum()} nodes from {self.nodes_name}.") | ||
graph = self.removing_nodes(graph) | ||
graph = self.update_edge_indices(graph) | ||
graph = self.add_attribute(graph) | ||
return graph | ||
|
||
|
||
class RemoveUnconnectedNodes(BaseMaskingProcessor): | ||
"""Remove unconnected nodes in the graph. | ||
Attributes | ||
---------- | ||
nodes_name: str | ||
Name of the unconnected nodes to remove. | ||
ignore: str, optional | ||
Name of an attribute to ignore when removing nodes. Nodes with | ||
this attribute set to True will not be removed. | ||
save_mask_indices_to_attr: str, optional | ||
Name of the attribute to save the mask indices. If provided, | ||
the indices of the kept nodes will be saved in this attribute. | ||
Methods | ||
------- | ||
compute_mask(graph) | ||
Compute the mask of the connected nodes. | ||
prune_graph(graph, mask) | ||
Prune the nodes with the specified mask. | ||
add_attribute(graph, mask) | ||
Add an attribute of the mask indices as node attribute. | ||
update_graph(graph) | ||
Post-process the graph. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
nodes_name: str, | ||
save_mask_indices_to_attr: str | None = None, | ||
ignore: str | None = None, | ||
) -> None: | ||
super().__init__(nodes_name, save_mask_indices_to_attr) | ||
self.ignore = ignore | ||
|
||
def compute_mask(self, graph: HeteroData) -> torch.Tensor: | ||
"""Compute the mask of connected nodes.""" | ||
nodes = graph[self.nodes_name] | ||
connected_mask = torch.zeros(nodes.num_nodes, dtype=torch.bool) | ||
|
||
if self.ignore is not None: | ||
LOGGER.info(f"The nodes with {self.ignore}=True will not be removed.") | ||
connected_mask[nodes[self.ignore].bool().squeeze()] = True | ||
|
||
for (source_name, _, target_name), edges in graph.edge_items(): | ||
if source_name == self.nodes_name: | ||
connected_mask[edges.edge_index[0]] = True | ||
|
||
if target_name == self.nodes_name: | ||
connected_mask[edges.edge_index[1]] = True | ||
|
||
return connected_mask |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
# (C) Copyright 2024 Anemoi contributors. | ||
# | ||
# This software is licensed under the terms of the Apache Licence Version 2.0 | ||
# which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. | ||
# | ||
# In applying this licence, ECMWF does not waive the privileges and immunities | ||
# granted to it by virtue of its status as an intergovernmental organisation | ||
# nor does it submit to any jurisdiction. | ||
from __future__ import annotations | ||
|
||
import pytest | ||
import torch | ||
from torch_geometric.data import HeteroData | ||
|
||
from anemoi.graphs.processors.post_process import RemoveUnconnectedNodes | ||
|
||
|
||
def test_remove_unconnected_nodes(graph_with_isolated_nodes: HeteroData): | ||
processor = RemoveUnconnectedNodes(nodes_name="test_nodes", ignore=None, save_mask_indices_to_attr=None) | ||
|
||
graph = processor.update_graph(graph_with_isolated_nodes) | ||
|
||
assert graph["test_nodes"].num_nodes == 4 | ||
assert torch.equal(graph["test_nodes"].x, torch.tensor([[2], [3], [4], [5]])) | ||
assert "original_indices" not in graph["test_nodes"] | ||
|
||
|
||
def test_remove_unconnected_nodes_with_indices_attr(graph_with_isolated_nodes: HeteroData): | ||
processor = RemoveUnconnectedNodes( | ||
nodes_name="test_nodes", ignore=None, save_mask_indices_to_attr="original_indices" | ||
) | ||
|
||
graph = processor.update_graph(graph_with_isolated_nodes) | ||
|
||
assert graph["test_nodes"].num_nodes == 4 | ||
assert torch.equal(graph["test_nodes"].x, torch.tensor([[2], [3], [4], [5]])) | ||
assert torch.equal(graph["test_nodes", "to", "test_nodes"].edge_index, torch.tensor([[1, 2, 3], [0, 1, 2]])) | ||
assert torch.equal(graph["test_nodes"].original_indices, torch.tensor([[1], [2], [3], [4]])) | ||
|
||
|
||
def test_remove_unconnected_nodes_with_ignore(graph_with_isolated_nodes: HeteroData): | ||
processor = RemoveUnconnectedNodes(nodes_name="test_nodes", ignore="mask_attr", save_mask_indices_to_attr=None) | ||
|
||
graph = processor.update_graph(graph_with_isolated_nodes) | ||
|
||
assert graph["test_nodes"].num_nodes == 5 | ||
assert torch.equal(graph["test_nodes"].x, torch.tensor([[1], [2], [3], [4], [5]])) | ||
assert torch.equal(graph["test_nodes", "to", "test_nodes"].edge_index, torch.tensor([[2, 3, 4], [1, 2, 3]])) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"nodes_name,ignore,save_mask_indices_to_attr", | ||
[ | ||
("test_nodes", None, "original_indices"), | ||
("test_nodes", "mask_attr", None), | ||
("test_nodes", None, None), | ||
], | ||
) | ||
def test_remove_unconnected_nodes_parametrized( | ||
graph_with_isolated_nodes: HeteroData, | ||
nodes_name: str, | ||
ignore: str | None, | ||
save_mask_indices_to_attr: str | None, | ||
): | ||
processor = RemoveUnconnectedNodes( | ||
nodes_name=nodes_name, ignore=ignore, save_mask_indices_to_attr=save_mask_indices_to_attr | ||
) | ||
|
||
graph = processor.update_graph(graph_with_isolated_nodes) | ||
|
||
assert isinstance(graph, HeteroData) | ||
pruned_nodes = 4 if ignore is None else 5 | ||
assert graph[nodes_name].num_nodes == pruned_nodes | ||
|
||
if save_mask_indices_to_attr: | ||
assert save_mask_indices_to_attr in graph[nodes_name] | ||
assert graph[nodes_name][save_mask_indices_to_attr].ndim == 2 | ||
else: | ||
assert graph[nodes_name].node_attrs() == graph_with_isolated_nodes[nodes_name].node_attrs() |