comments | difficulty | edit_url | rating | source | tags | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
true |
中等 |
1476 |
第 305 场周赛 Q2 |
|
现有一棵由 n
个节点组成的无向树,节点编号从 0
到 n - 1
,共有 n - 1
条边。
给你一个二维整数数组 edges
,长度为 n - 1
,其中 edges[i] = [ai, bi]
表示树中节点 ai
和 bi
之间存在一条边。另给你一个整数数组 restricted
表示 受限 节点。
在不访问受限节点的前提下,返回你可以从节点 0
到达的 最多 节点数目。
注意,节点 0
不 会标记为受限节点。
示例 1:
输入:n = 7, edges = [[0,1],[1,2],[3,1],[4,0],[0,5],[5,6]], restricted = [4,5] 输出:4 解释:上图所示正是这棵树。 在不访问受限节点的前提下,只有节点 [0,1,2,3] 可以从节点 0 到达。
示例 2:
输入:n = 7, edges = [[0,1],[0,2],[0,5],[0,4],[3,2],[6,5]], restricted = [4,2,1] 输出:3 解释:上图所示正是这棵树。 在不访问受限节点的前提下,只有节点 [0,5,6] 可以从节点 0 到达。
提示:
2 <= n <= 105
edges.length == n - 1
edges[i].length == 2
0 <= ai, bi < n
ai != bi
edges
表示一棵有效的树1 <= restricted.length < n
1 <= restricted[i] < n
restricted
中的所有值 互不相同
我们首先根据给定的边构建一个邻接表
接下来我们定义一个深度优先搜索函数
最后我们返回
时间复杂度
class Solution:
def reachableNodes(
self, n: int, edges: List[List[int]], restricted: List[int]
) -> int:
def dfs(i: int) -> int:
vis.add(i)
return 1 + sum(j not in vis and dfs(j) for j in g[i])
g = defaultdict(list)
for a, b in edges:
g[a].append(b)
g[b].append(a)
vis = set(restricted)
return dfs(0)
class Solution {
private List<Integer>[] g;
private boolean[] vis;
public int reachableNodes(int n, int[][] edges, int[] restricted) {
g = new List[n];
vis = new boolean[n];
Arrays.setAll(g, k -> new ArrayList<>());
for (var e : edges) {
int a = e[0], b = e[1];
g[a].add(b);
g[b].add(a);
}
for (int i : restricted) {
vis[i] = true;
}
return dfs(0);
}
private int dfs(int i) {
vis[i] = true;
int ans = 1;
for (int j : g[i]) {
if (!vis[j]) {
ans += dfs(j);
}
}
return ans;
}
}
class Solution {
public:
int reachableNodes(int n, vector<vector<int>>& edges, vector<int>& restricted) {
vector<int> g[n];
vector<int> vis(n);
for (auto& e : edges) {
int a = e[0], b = e[1];
g[a].emplace_back(b);
g[b].emplace_back(a);
}
for (int i : restricted) {
vis[i] = true;
}
function<int(int)> dfs = [&](int i) {
vis[i] = true;
int ans = 1;
for (int j : g[i]) {
if (!vis[j]) {
ans += dfs(j);
}
}
return ans;
};
return dfs(0);
}
};
func reachableNodes(n int, edges [][]int, restricted []int) int {
g := make([][]int, n)
for _, e := range edges {
a, b := e[0], e[1]
g[a] = append(g[a], b)
g[b] = append(g[b], a)
}
vis := make([]bool, n)
for _, v := range restricted {
vis[v] = true
}
ans := 0
var dfs func(u int)
dfs = func(u int) {
if vis[u] {
return
}
vis[u] = true
ans++
for _, v := range g[u] {
dfs(v)
}
}
dfs(0)
return ans
}
function reachableNodes(n: number, edges: number[][], restricted: number[]): number {
const vis: boolean[] = Array(n).fill(false);
const g: number[][] = Array.from({ length: n }, () => []);
for (const [a, b] of edges) {
g[a].push(b);
g[b].push(a);
}
for (const i of restricted) {
vis[i] = true;
}
const dfs = (i: number): number => {
vis[i] = true;
let ans = 1;
for (const j of g[i]) {
if (!vis[j]) {
ans += dfs(j);
}
}
return ans;
};
return dfs(0);
}
与方法一类似,我们首先根据给定的边构建一个邻接表
接下来我们使用广度优先搜索遍历整个图,统计可以到达的节点数。我们定义一个队列
遍历结束后,返回答案即可。
时间复杂度
class Solution:
def reachableNodes(
self, n: int, edges: List[List[int]], restricted: List[int]
) -> int:
g = defaultdict(list)
for a, b in edges:
g[a].append(b)
g[b].append(a)
vis = set(restricted + [0])
q = deque([0])
ans = 0
while q:
i = q.popleft()
ans += 1
for j in g[i]:
if j not in vis:
q.append(j)
vis.add(j)
return ans
class Solution {
public int reachableNodes(int n, int[][] edges, int[] restricted) {
List<Integer>[] g = new List[n];
boolean[] vis = new boolean[n];
Arrays.setAll(g, k -> new ArrayList<>());
for (var e : edges) {
int a = e[0], b = e[1];
g[a].add(b);
g[b].add(a);
}
for (int v : restricted) {
vis[v] = true;
}
Deque<Integer> q = new ArrayDeque<>();
q.offer(0);
int ans = 0;
for (vis[0] = true; !q.isEmpty(); ++ans) {
int i = q.pollFirst();
for (int j : g[i]) {
if (!vis[j]) {
q.offer(j);
vis[j] = true;
}
}
}
return ans;
}
}
class Solution {
public:
int reachableNodes(int n, vector<vector<int>>& edges, vector<int>& restricted) {
vector<int> g[n];
vector<int> vis(n);
for (auto& e : edges) {
int a = e[0], b = e[1];
g[a].emplace_back(b);
g[b].emplace_back(a);
}
for (int i : restricted) {
vis[i] = true;
}
queue<int> q{{0}};
int ans = 0;
for (vis[0] = true; !q.empty(); ++ans) {
int i = q.front();
q.pop();
for (int j : g[i]) {
if (!vis[j]) {
vis[j] = true;
q.push(j);
}
}
}
return ans;
}
};
func reachableNodes(n int, edges [][]int, restricted []int) (ans int) {
g := make([][]int, n)
vis := make([]bool, n)
for _, e := range edges {
a, b := e[0], e[1]
g[a] = append(g[a], b)
g[b] = append(g[b], a)
}
for _, i := range restricted {
vis[i] = true
}
q := []int{0}
for vis[0] = true; len(q) > 0; ans++ {
i := q[0]
q = q[1:]
for _, j := range g[i] {
if !vis[j] {
vis[j] = true
q = append(q, j)
}
}
}
return
}
function reachableNodes(n: number, edges: number[][], restricted: number[]): number {
const vis: boolean[] = Array(n).fill(false);
const g: number[][] = Array.from({ length: n }, () => []);
for (const [a, b] of edges) {
g[a].push(b);
g[b].push(a);
}
for (const i of restricted) {
vis[i] = true;
}
const q: number[] = [0];
let ans = 0;
for (vis[0] = true; q.length; ++ans) {
const i = q.pop()!;
for (const j of g[i]) {
if (!vis[j]) {
vis[j] = true;
q.push(j);
}
}
}
return ans;
}