Skip to content

Commit

Permalink
Cleanup random seed, lint.
Browse files Browse the repository at this point in the history
  • Loading branch information
trivialfis committed Jun 27, 2023
1 parent cf8f381 commit c7f4b1b
Show file tree
Hide file tree
Showing 2 changed files with 38 additions and 35 deletions.
1 change: 1 addition & 0 deletions tests/ci_build/lint_python.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ class LintersPaths:
"tests/python/test_predict.py",
"tests/python/test_quantile_dmatrix.py",
"tests/python/test_tree_regularization.py",
"tests/python/test_shap.py",
"tests/python-gpu/test_gpu_data_iterator.py",
"tests/test_distributed/test_with_spark/",
"tests/test_distributed/test_gpu_with_spark/",
Expand Down
72 changes: 37 additions & 35 deletions tests/python/test_shap.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,35 +6,34 @@
import scipy.special

import xgboost as xgb

dpath = 'demo/data/'
rng = np.random.RandomState(1994)
from xgboost import testing as tm


class TestSHAP:

def test_feature_importances(self):
data = np.random.randn(100, 5)
def test_feature_importances(self) -> None:
rng = np.random.RandomState(1994)
data = rng.randn(100, 5)
target = np.array([0, 1] * 50)

features = ['Feature1', 'Feature2', 'Feature3', 'Feature4', 'Feature5']
features = ["Feature1", "Feature2", "Feature3", "Feature4", "Feature5"]

dm = xgb.DMatrix(data, label=target,
feature_names=features)
params = {'objective': 'multi:softprob',
'eval_metric': 'mlogloss',
'eta': 0.3,
'num_class': 3}
dm = xgb.DMatrix(data, label=target, feature_names=features)
params = {
"objective": "multi:softprob",
"eval_metric": "mlogloss",
"eta": 0.3,
"num_class": 3,
}

bst = xgb.train(params, dm, num_boost_round=10)

# number of feature importances should == number of features
scores1 = bst.get_score()
scores2 = bst.get_score(importance_type='weight')
scores3 = bst.get_score(importance_type='cover')
scores4 = bst.get_score(importance_type='gain')
scores5 = bst.get_score(importance_type='total_cover')
scores6 = bst.get_score(importance_type='total_gain')
scores2 = bst.get_score(importance_type="weight")
scores3 = bst.get_score(importance_type="cover")
scores4 = bst.get_score(importance_type="gain")
scores5 = bst.get_score(importance_type="total_cover")
scores6 = bst.get_score(importance_type="total_gain")
assert len(scores1) == len(features)
assert len(scores2) == len(features)
assert len(scores3) == len(features)
Expand All @@ -46,12 +45,11 @@ def test_feature_importances(self):
fscores = bst.get_fscore()
assert scores1 == fscores

dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train?format=libsvm')
dtest = xgb.DMatrix(dpath + 'agaricus.txt.test?format=libsvm')
dtrain, dtest = tm.load_agaricus(__file__)

def fn(max_depth, num_rounds):
def fn(max_depth: int, num_rounds: int) -> None:
# train
params = {'max_depth': max_depth, 'eta': 1, 'verbosity': 0}
params = {"max_depth": max_depth, "eta": 1, "verbosity": 0}
bst = xgb.train(params, dtrain, num_boost_round=num_rounds)

# predict
Expand Down Expand Up @@ -82,7 +80,7 @@ def fn(max_depth, num_rounds):
assert out[0, 1] == 0.375
assert out[0, 2] == 0.25

def parse_model(model):
def parse_model(model: xgb.Booster) -> list:
trees = []
r_exp = r"([0-9]+):\[f([0-9]+)<([0-9\.e-]+)\] yes=([0-9]+),no=([0-9]+).*cover=([0-9e\.]+)"
r_exp_leaf = r"([0-9]+):leaf=([0-9\.e-]+),cover=([0-9e\.]+)"
Expand All @@ -93,25 +91,26 @@ def parse_model(model):
match = re.search(r_exp, line)
if match is not None:
ind = int(match.group(1))
assert trees[-1] is not None
while ind >= len(trees[-1]):
assert isinstance(trees[-1], list)
trees[-1].append(None)
trees[-1][ind] = {
"yes_ind": int(match.group(4)),
"no_ind": int(match.group(5)),
"value": None,
"threshold": float(match.group(3)),
"feature_index": int(match.group(2)),
"cover": float(match.group(6))
"cover": float(match.group(6)),
}
else:

match = re.search(r_exp_leaf, line)
ind = int(match.group(1))
while ind >= len(trees[-1]):
trees[-1].append(None)
trees[-1][ind] = {
"value": float(match.group(2)),
"cover": float(match.group(3))
"cover": float(match.group(3)),
}
return trees

Expand All @@ -122,7 +121,7 @@ def exp_value_rec(tree, z, x, i=0):
ind = tree[i]["feature_index"]
if z[ind] == 1:
# 1e-6 for numeric error from parsing text dump.
if x[ind] + 1e-6 < tree[i]["threshold"]:
if x[ind] + 1e-6 <= tree[i]["threshold"]:
return exp_value_rec(tree, z, x, tree[i]["yes_ind"])
else:
return exp_value_rec(tree, z, x, tree[i]["no_ind"])
Expand All @@ -137,10 +136,13 @@ def exp_value_rec(tree, z, x, i=0):
return val

def exp_value(trees, z, x):
"E[f(z)|Z_s = X_s]"
return np.sum([exp_value_rec(tree, z, x) for tree in trees])

def all_subsets(ss):
return itertools.chain(*map(lambda x: itertools.combinations(ss, x), range(0, len(ss) + 1)))
return itertools.chain(
*map(lambda x: itertools.combinations(ss, x), range(0, len(ss) + 1))
)

def shap_value(trees, x, i, cond=None, cond_value=None):
M = len(x)
Expand Down Expand Up @@ -197,7 +199,9 @@ def interaction_value(trees, x, i, j):
z[i] = 0
v01 = exp_value(trees, z, x)
z[j] = 0
total += (v11 - v01 - v10 + v00) / (scipy.special.binom(M - 2, len(subset)) * (M - 1))
total += (v11 - v01 - v10 + v00) / (
scipy.special.binom(M - 2, len(subset)) * (M - 1)
)
z[list(subset)] = 0
return total

Expand All @@ -221,11 +225,10 @@ def interaction_value(trees, x, i, j):
assert np.linalg.norm(brute_force - fast_method[0, :, :]) < 1e-4

# test a random function
np.random.seed(0)
M = 2
N = 4
X = np.random.randn(N, M)
y = np.random.randn(N)
X = rng.randn(N, M)
y = rng.randn(N)
param = {"max_depth": 2, "base_score": 0.0, "eta": 1.0, "lambda": 0}
bst = xgb.train(param, xgb.DMatrix(X, label=y), 1)
brute_force = shap_values(parse_model(bst), X[0, :])
Expand All @@ -237,11 +240,10 @@ def interaction_value(trees, x, i, j):
assert np.linalg.norm(brute_force - fast_method[0, :, :]) < 1e-4

# test another larger more complex random function
np.random.seed(0)
M = 5
N = 100
X = np.random.randn(N, M)
y = np.random.randn(N)
X = rng.randn(N, M)
y = rng.randn(N)
base_score = 1.0
param = {"max_depth": 5, "base_score": base_score, "eta": 0.1, "gamma": 2.0}
bst = xgb.train(param, xgb.DMatrix(X, label=y), 10)
Expand Down

0 comments on commit c7f4b1b

Please sign in to comment.