Skip to content

Commit

Permalink
[R] Set number of threads in demos and tests.
Browse files Browse the repository at this point in the history
- Restrict the number of threads in IO.
- Specify the number of threads in demos and tests.
- Add helper scripts for checks.
  • Loading branch information
trivialfis committed Sep 21, 2023
1 parent 032bcc5 commit 70c4375
Show file tree
Hide file tree
Showing 44 changed files with 654 additions and 270 deletions.
14 changes: 9 additions & 5 deletions R-package/R/callbacks.R
Original file line number Diff line number Diff line change
Expand Up @@ -557,14 +557,18 @@ cb.cv.predict <- function(save_models = FALSE) {
#'
#' @examples
#' #### Binary classification:
#' #
#'
#' ## Keep the number of threads to 1 for examples
#' nthread <- 1
#' data.table::setDTthreads(nthread)
#'
#' # In the iris dataset, it is hard to linearly separate Versicolor class from the rest
#' # without considering the 2nd order interactions:
#' x <- model.matrix(Species ~ .^2, iris)[,-1]
#' colnames(x)
#' dtrain <- xgb.DMatrix(scale(x), label = 1*(iris$Species == "versicolor"), nthread = 2)
#' dtrain <- xgb.DMatrix(scale(x), label = 1*(iris$Species == "versicolor"), nthread = nthread)
#' param <- list(booster = "gblinear", objective = "reg:logistic", eval_metric = "auc",
#' lambda = 0.0003, alpha = 0.0003, nthread = 2)
#' lambda = 0.0003, alpha = 0.0003, nthread = nthread)
#' # For 'shotgun', which is a default linear updater, using high eta values may result in
#' # unstable behaviour in some datasets. With this simple dataset, however, the high learning
#' # rate does not break the convergence, but allows us to illustrate the typical pattern of
Expand Down Expand Up @@ -594,9 +598,9 @@ cb.cv.predict <- function(save_models = FALSE) {
#'
#' #### Multiclass classification:
#' #
#' dtrain <- xgb.DMatrix(scale(x), label = as.numeric(iris$Species) - 1, nthread = 1)
#' dtrain <- xgb.DMatrix(scale(x), label = as.numeric(iris$Species) - 1, nthread = nthread)
#' param <- list(booster = "gblinear", objective = "multi:softprob", num_class = 3,
#' lambda = 0.0003, alpha = 0.0003, nthread = 1)
#' lambda = 0.0003, alpha = 0.0003, nthread = nthread)
#' # For the default linear updater 'shotgun' it sometimes is helpful
#' # to use smaller eta to reduce instability
#' bst <- xgb.train(param, dtrain, list(tr=dtrain), nrounds = 50, eta = 0.5,
Expand Down
16 changes: 13 additions & 3 deletions R-package/R/xgb.Booster.R
Original file line number Diff line number Diff line change
Expand Up @@ -267,11 +267,16 @@ xgb.Booster.complete <- function(object, saveraw = TRUE) {
#'
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
#'
#' ## Keep the number of threads to 2 for examples
#' nthread <- 2
#' data.table::setDTthreads(nthread)
#'
#' train <- agaricus.train
#' test <- agaricus.test
#'
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
#' eta = 0.5, nthread = 2, nrounds = 5, objective = "binary:logistic")
#' eta = 0.5, nthread = nthread, nrounds = 5, objective = "binary:logistic")
#' # use all trees by default
#' pred <- predict(bst, test$data)
#' # use only the 1st tree
Expand Down Expand Up @@ -628,10 +633,15 @@ xgb.attributes <- function(object) {
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' ## Keep the number of threads to 1 for examples
#' nthread <- 1
#' data.table::setDTthreads(nthread)
#' train <- agaricus.train
#'
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
#' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
#' bst <- xgboost(
#' data = train$data, label = train$label, max_depth = 2,
#' eta = 1, nthread = nthread, nrounds = 2, objective = "binary:logistic"
#' )
#' config <- xgb.config(bst)
#'
#' @rdname xgb.config
Expand Down
7 changes: 6 additions & 1 deletion R-package/R/xgb.DMatrix.R
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,12 @@
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))
#' ## Keep the number of threads to 1 for examples
#' nthread <- 1
#' data.table::setDTthreads(nthread)
#' dtrain <- with(
#' agaricus.train, xgb.DMatrix(data, label = label, nthread = nthread)
#' )
#' xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')
#' dtrain <- xgb.DMatrix('xgb.DMatrix.data')
#' if (file.exists('xgb.DMatrix.data')) file.remove('xgb.DMatrix.data')
Expand Down
15 changes: 12 additions & 3 deletions R-package/R/xgb.load.R
Original file line number Diff line number Diff line change
Expand Up @@ -22,14 +22,23 @@
#' @examples
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
#'
#' ## Keep the number of threads to 1 for examples
#' nthread <- 1
#' data.table::setDTthreads(nthread)
#'
#' train <- agaricus.train
#' test <- agaricus.test
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
#' eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
#' bst <- xgboost(
#' data = train$data, label = train$label, max_depth = 2, eta = 1,
#' nthread = nthread,
#' nrounds = 2,
#' objective = "binary:logistic"
#' )
#'
#' xgb.save(bst, 'xgb.model')
#' bst <- xgb.load('xgb.model')
#' if (file.exists('xgb.model')) file.remove('xgb.model')
#' pred <- predict(bst, test$data)
#' @export
xgb.load <- function(modelfile) {
if (is.null(modelfile))
Expand Down
5 changes: 4 additions & 1 deletion R-package/R/xgb.model.dt.tree.R
Original file line number Diff line number Diff line change
Expand Up @@ -46,9 +46,12 @@
#' # Basic use:
#'
#' data(agaricus.train, package='xgboost')
#' ## Keep the number of threads to 1 for examples
#' nthread <- 1
#' data.table::setDTthreads(nthread)
#'
#' bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 2,
#' eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
#' eta = 1, nthread = nthread, nrounds = 2,objective = "binary:logistic")
#'
#' (dt <- xgb.model.dt.tree(colnames(agaricus.train$data), bst))
#'
Expand Down
7 changes: 5 additions & 2 deletions R-package/R/xgb.plot.deepness.R
Original file line number Diff line number Diff line change
Expand Up @@ -45,10 +45,13 @@
#' @examples
#'
#' data(agaricus.train, package='xgboost')
#' ## Keep the number of threads to 2 for examples
#' nthread <- 2
#' data.table::setDTthreads(nthread)
#'
#' # Change max_depth to a higher number to get a more significant result
#' ## Change max_depth to a higher number to get a more significant result
#' bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 6,
#' eta = 0.1, nthread = 2, nrounds = 50, objective = "binary:logistic",
#' eta = 0.1, nthread = nthread, nrounds = 50, objective = "binary:logistic",
#' subsample = 0.5, min_child_weight = 2)
#'
#' xgb.plot.deepness(bst)
Expand Down
9 changes: 7 additions & 2 deletions R-package/R/xgb.plot.importance.R
Original file line number Diff line number Diff line change
Expand Up @@ -45,9 +45,14 @@
#'
#' @examples
#' data(agaricus.train)
#' ## Keep the number of threads to 2 for examples
#' nthread <- 2
#' data.table::setDTthreads(nthread)
#'
#' bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 3,
#' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
#' bst <- xgboost(
#' data = agaricus.train$data, label = agaricus.train$label, max_depth = 3,
#' eta = 1, nthread = nthread, nrounds = 2, objective = "binary:logistic"
#' )
#'
#' importance_matrix <- xgb.importance(colnames(agaricus.train$data), model = bst)
#'
Expand Down
13 changes: 9 additions & 4 deletions R-package/R/xgb.plot.multi.trees.R
Original file line number Diff line number Diff line change
Expand Up @@ -43,10 +43,15 @@
#' @examples
#'
#' data(agaricus.train, package='xgboost')
#'
#' bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 15,
#' eta = 1, nthread = 2, nrounds = 30, objective = "binary:logistic",
#' min_child_weight = 50, verbose = 0)
#' ## Keep the number of threads to 2 for examples
#' nthread <- 2
#' data.table::setDTthreads(nthread)
#'
#' bst <- xgboost(
#' data = agaricus.train$data, label = agaricus.train$label, max_depth = 15,
#' eta = 1, nthread = nthread, nrounds = 30, objective = "binary:logistic",
#' min_child_weight = 50, verbose = 0
#' )
#'
#' p <- xgb.plot.multi.trees(model = bst, features_keep = 3)
#' print(p)
Expand Down
12 changes: 8 additions & 4 deletions R-package/R/xgb.plot.shap.R
Original file line number Diff line number Diff line change
Expand Up @@ -74,9 +74,14 @@
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
#'
#' bst <- xgboost(agaricus.train$data, agaricus.train$label, nrounds = 50,
#' ## Keep the number of threads to 1 for examples
#' nthread <- 1
#' data.table::setDTthreads(nthread)
#' nrounds <- 20
#'
#' bst <- xgboost(agaricus.train$data, agaricus.train$label, nrounds = nrounds,
#' eta = 0.1, max_depth = 3, subsample = .5,
#' method = "hist", objective = "binary:logistic", nthread = 2, verbose = 0)
#' method = "hist", objective = "binary:logistic", nthread = nthread, verbose = 0)
#'
#' xgb.plot.shap(agaricus.test$data, model = bst, features = "odor=none")
#' contr <- predict(bst, agaricus.test$data, predcontrib = TRUE)
Expand All @@ -85,12 +90,11 @@
#'
#' # multiclass example - plots for each class separately:
#' nclass <- 3
#' nrounds <- 20
#' x <- as.matrix(iris[, -5])
#' set.seed(123)
#' is.na(x[sample(nrow(x) * 4, 30)]) <- TRUE # introduce some missing values
#' mbst <- xgboost(data = x, label = as.numeric(iris$Species) - 1, nrounds = nrounds,
#' max_depth = 2, eta = 0.3, subsample = .5, nthread = 2,
#' max_depth = 2, eta = 0.3, subsample = .5, nthread = nthread,
#' objective = "multi:softprob", num_class = nclass, verbose = 0)
#' trees0 <- seq(from=0, by=nclass, length.out=nrounds)
#' col <- rgb(0, 0, 1, 0.5)
Expand Down
14 changes: 11 additions & 3 deletions R-package/R/xgb.save.R
Original file line number Diff line number Diff line change
Expand Up @@ -25,14 +25,22 @@
#' @examples
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
#'
#' ## Keep the number of threads to 1 for examples
#' nthread <- 1
#' data.table::setDTthreads(nthread)
#'
#' train <- agaricus.train
#' test <- agaricus.test
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
#' eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
#' bst <- xgboost(
#' data = train$data, label = train$label, max_depth = 2, eta = 1,
#' nthread = nthread,
#' nrounds = 2,
#' objective = "binary:logistic"
#' )
#' xgb.save(bst, 'xgb.model')
#' bst <- xgb.load('xgb.model')
#' if (file.exists('xgb.model')) file.remove('xgb.model')
#' pred <- predict(bst, test$data)
#' @export
xgb.save <- function(model, fname) {
if (typeof(fname) != "character")
Expand Down
9 changes: 7 additions & 2 deletions R-package/R/xgb.save.raw.R
Original file line number Diff line number Diff line change
Expand Up @@ -16,13 +16,18 @@
#' @examples
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
#'
#' ## Keep the number of threads to 2 for examples
#' nthread <- 2
#' data.table::setDTthreads(nthread)
#'
#' train <- agaricus.train
#' test <- agaricus.test
#' bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
#' eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
#' eta = 1, nthread = nthread, nrounds = 2,objective = "binary:logistic")
#'
#' raw <- xgb.save.raw(bst)
#' bst <- xgb.load.raw(raw)
#' pred <- predict(bst, test$data)
#'
#' @export
xgb.save.raw <- function(model, raw_format = "deprecated") {
Expand Down
29 changes: 19 additions & 10 deletions R-package/R/xgb.train.R
Original file line number Diff line number Diff line change
Expand Up @@ -168,7 +168,8 @@
#' than the \code{xgboost} interface.
#'
#' Parallelization is automatically enabled if \code{OpenMP} is present.
#' Number of threads can also be manually specified via \code{nthread} parameter.
#' Number of threads can also be manually specified via the \code{nthread}
#' parameter.
#'
#' The evaluation metric is chosen automatically by XGBoost (according to the objective)
#' when the \code{eval_metric} parameter is not provided.
Expand Down Expand Up @@ -237,17 +238,25 @@
#' data(agaricus.train, package='xgboost')
#' data(agaricus.test, package='xgboost')
#'
#' dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))
#' dtest <- with(agaricus.test, xgb.DMatrix(data, label = label, nthread = 2))
#' ## Keep the number of threads to 1 for examples
#' nthread <- 1
#' data.table::setDTthreads(nthread)
#'
#' dtrain <- with(
#' agaricus.train, xgb.DMatrix(data, label = label, nthread = nthread)
#' )
#' dtest <- with(
#' agaricus.test, xgb.DMatrix(data, label = label, nthread = nthread)
#' )
#' watchlist <- list(train = dtrain, eval = dtest)
#'
#' ## A simple xgb.train example:
#' param <- list(max_depth = 2, eta = 1, verbose = 0, nthread = 2,
#' param <- list(max_depth = 2, eta = 1, verbose = 0, nthread = nthread,
#' objective = "binary:logistic", eval_metric = "auc")
#' bst <- xgb.train(param, dtrain, nrounds = 2, watchlist)
#'
#'
#' ## An xgb.train example where custom objective and evaluation metric are used:
#' ## An xgb.train example where custom objective and evaluation metric are
#' ## used:
#' logregobj <- function(preds, dtrain) {
#' labels <- getinfo(dtrain, "label")
#' preds <- 1/(1 + exp(-preds))
Expand All @@ -263,12 +272,12 @@
#'
#' # These functions could be used by passing them either:
#' # as 'objective' and 'eval_metric' parameters in the params list:
#' param <- list(max_depth = 2, eta = 1, verbose = 0, nthread = 2,
#' param <- list(max_depth = 2, eta = 1, verbose = 0, nthread = nthread,
#' objective = logregobj, eval_metric = evalerror)
#' bst <- xgb.train(param, dtrain, nrounds = 2, watchlist)
#'
#' # or through the ... arguments:
#' param <- list(max_depth = 2, eta = 1, verbose = 0, nthread = 2)
#' param <- list(max_depth = 2, eta = 1, verbose = 0, nthread = nthread)
#' bst <- xgb.train(param, dtrain, nrounds = 2, watchlist,
#' objective = logregobj, eval_metric = evalerror)
#'
Expand All @@ -278,7 +287,7 @@
#'
#'
#' ## An xgb.train example of using variable learning rates at each iteration:
#' param <- list(max_depth = 2, eta = 1, verbose = 0, nthread = 2,
#' param <- list(max_depth = 2, eta = 1, verbose = 0, nthread = nthread,
#' objective = "binary:logistic", eval_metric = "auc")
#' my_etas <- list(eta = c(0.5, 0.1))
#' bst <- xgb.train(param, dtrain, nrounds = 2, watchlist,
Expand All @@ -290,7 +299,7 @@
#'
#' ## An 'xgboost' interface example:
#' bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label,
#' max_depth = 2, eta = 1, nthread = 2, nrounds = 2,
#' max_depth = 2, eta = 1, nthread = nthread, nrounds = 2,
#' objective = "binary:logistic")
#' pred <- predict(bst, agaricus.test$data)
#'
Expand Down
14 changes: 9 additions & 5 deletions R-package/man/cb.gblinear.history.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

7 changes: 6 additions & 1 deletion R-package/man/predict.xgb.Booster.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

7 changes: 6 additions & 1 deletion R-package/man/xgb.DMatrix.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading

0 comments on commit 70c4375

Please sign in to comment.